Mounting device for rotating electric machines

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S180000, C310S214000, C310S215000, C310S216006, C310S216055, C310S254100

Reexamination Certificate

active

06429563

ABSTRACT:

TECHNICAL FIELD
The present invention relates in a first aspect to a mounting device for reducing short-circuiting forces that are transmitted from a stator core to a stator body in a rotating electric machine.
In a second aspect the present invention relates to a rotating electric machine incorporating mounting devices of the above-mentioned type.
The invention is applicable to rotating electric machines such as synchronous machines and normal asynchronous machines. The invention is also applicable to other electric machines such as dual-fed machines, and to applications in asynchronous static current converter cascades, outerpole machines and synchronous flow machines provided their windings are made up of insulated electric conductors, preferably operating at high voltages. By high voltages is meant in the first places electric voltages in excess of 10 kV. A typical working range for the device according to the invention may be of 36 kV-800 kV.
The invention is in the first place intended for use with a high-voltage cable of the type built up of an electric conductor composed of a number of strand parts, a first semiconducting layer surrounding the electric conductor, an insulating layer surrounding the first semiconducting layer, and a second semiconducting layer surrounding the insulating layer, and its advantages are particularly prominent here. The invention refers particularly to such a cable having a diameter within the interval 20-200 mm and a conducting area within the interval 80-3000 mm
2
.
Such applications of the invention thus constitute preferred embodiments thereof.
BACKGROUND ART
Similar machines have conventionally been designed for voltages in the range 15-30 kV, and 30 kV has normally been considered to be an upper limit. This generally means that a generator must be connected to the power network via a transformer which steps up the voltage to the level of the power network, i.e. in the range of approximately 130-400 kV.
A conductor is known through U.S. Pat. No. 5,036,165, in which the insulation is provided with an inner and an outer layer of semiconducting pyrolized glassfiber. It is also known to provide conductors in a dynamo-electric machine with such an insulation, as described in U.S. Pat. No. 5,066,881 for instance, where a semiconducting pyrolized glassfiber layer is in contact with the two parallel rods forming the conductor, and the insulation in the stator slots is surrounded by an outer layer of semiconducting pyrolized glassfiber. The pyrolized glassfiber material is described as suitable since it retains its resistivity even after the impregnation treatment.
In rotating electric machines the stator core is attached to the stator body by mounting devices.
Conventional mounting devices consist of a guide bar, a beam and a mounting bolt. The guide bar is used to guide the stator lamination segments when laying the plates for the laminated core. The beam is welded into the stator body. The mounting bolt secures the guide bar to the beam and is arranged with the bolt head recessed in the guide bar and attached in the beam by a screw joint. (See
FIG. 3.
) The mounting bolt is thus shorter than the thickness of the beam. The package with guide bar, bolt and beam is repeated a number of times in peripheral direction of the stator. Since this connection between laminated core and stator body is relatively rigid, forces are transmitted from the stator core to the stator body and the base in the event of a short circuit. Transient short-circuiting forces are thus transmitted directly into the base. Furthermore, the manufacturing procedure for conventional mounting devices is relatively complicated and expensive. A specially-manufactured bolt is used, for instance.
SUMMARY OF THE INVENTION
The object of the present invention is to solve the problems mentioned above. This is achieved with a mounting device for reducing short-circuiting forces that are transmitted from a stator core to a stator body in a rotating electric machine as described herein, and a rotating electric machine comprising mounting devices of the above type. The rotating electric machine comprises a stator. The stator core is composed of a number of packs, each of which includes a number of metal sheets, or of a number of metal sheets, each pack or metal sheet having two identical grooves arranged for cooperation with wedge members designed to joint together packs or metal sheets. The stator body comprises beams, each connected to a wedge member. The mounting device according to the present invention is characterized in that windings are drawn through slots in the stator, wherein the windings consist of high-voltage cable and that the mounting device comprises a connector arranged through a through-hole in the beam and secured in the wedge member in order to connect the beam and wedge member, wherein the cross-sectional area of said hole at right angles to its longitudinal axis being greater than a cross-sectional area of the connector at right angles to the longitudinal axis of the connector, so as to permit sliding between the wedge member and the beam in the event of short-circuiting.
The mounting device according to the invention greatly reduces the forces transmitted from the stator core to the stator body in the event of short circuits. The mounting device is easy and quick to produce, as well as being relatively inexpensive.
In machines according to the invention the windings are preferably of a type corresponding to cables with solid, extruded insulation, such as those now used for power distribution, e.g. XLPE-cables or cables with EPR-insulation. Such a cable comprises an inner conductor composed of one or more strand parts, an inner semiconducting layer surrounding the conductor, a solid insulating layer surrounding this and an outer semiconducting layer surrounding the insulating layer. Such cables are flexible, which is an important property in this context since the technology for the device according to the invention is based primarily on winding systems in which the winding is formed from cable which is bent during assembly. The flexibility of a XLPE-cable normally corresponds to a radius of curvature of approximately 20 cm for a cable 30 mm in diameter, and a radius of curvature of approximately 65 cm for a cable 80 mm in diameter. In the present application the term “flexible” is used to indicate that the winding is flexible down to a radius of curvature in the order of four times the cable diameter, preferably eight to twelve times the cable diameter.
The winding should be constructed to retain its properties even when it is bent and when it is subjected to thermal stress during operation. It is vital that the layers retain their adhesion to each other in this context. The material properties of the layers are decisive here, particularly their elasticity and relative coefficients of thermal expansion. In a XLPE-cable, for instance, the insulating layer consists of cross-linked, low-density polyethylene, and the semiconducting layers consist of polyethylene with soot and metal particles mixed in. Changes in volume as a result of temperature fluctuations are completely absorbed as changes in radius in the cable and, thanks to the comparatively slight difference between the coefficients of thermal expansion in the layers in relation to the elasticity of these materials, the radial expansion can take place without the adhesion between the layers being lost.
The material combinations stated above should be considered only as examples. Other combinations fulfilling the conditions specified and also the condition of being semiconducting, i.e. having resistivity within the range of 10
−1
-10
6
ohm-cm, e.g. 1-500 ohm-cm, or 10-200 ohm-cm, naturally also fall within the scope of the invention.
The insulating layer may consist, for example, of a solid thermoplastic material such as low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polybutylene (PB), polymethyl pentene (PMP), cross-linked materials such as cross-linked polyethylen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mounting device for rotating electric machines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mounting device for rotating electric machines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mounting device for rotating electric machines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2888771

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.