Mounting bracket and power bus for a connector block

Electrical connectors – With supporting means for coupling part – Interfitting with channel or double rail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S092000, C439S096000, C439S716000

Reexamination Certificate

active

06196869

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a mounting bracket for a telephone circuit connector block and, more particularly, to a connector block having an internal power bus which is energized upon mounting the connector block to a mounting bracket.
BACKGROUND OF THE INVENTION
Individual pairs of telephone circuit wires are frequently terminated in telephone company central offices, distribution cabinets and customer premise locations, for example, utilizing multi-terminal connector blocks, as is known in the art. Once terminated, these telephone circuit wires, usually comprised of cables containing narrow gauge insulated copper conductors, are grouped and then rerouted for appropriate distribution of the calls which they carry. Single connector blocks normally accommodate anywhere from 60 to 100 pairs of densely packed terminations, wherein multiple connector blocks are frequently contained in close proximity at a single location, e.g., one wall of a telephone switching room. Efficient utilization of mounting space is thus required since space within utility locations is traditionally at a premium.
Besides the incoming circuit terminations, the connector blocks are also utilized for making cross-connections between individual circuits on the connector blocks, as well as for mounting subsystems including test probes or current/voltage limiting circuit protectors which are used to prevent damage that may be caused by lightning, fallen power lines, or other external forces. For the most part, the terminations and cross-connections are made only at a front facing side of any connector block because the front area is the only area which is easily accessible. In addition, the circuit protection is also generally included at the front of the block, wherein grounding connections to establish a conduction path from the circuit protection to the mounting frame are required and accomplished, for example, by way of a ground bus connected to the mounting frame, such as the ground bus disclosed in U.S. Pat. No. 5,595,507 of Braun et al., assigned to the present assignee.
The many connections on the front face of a connector block make for a congested wiring arrangement. In order to energize a test probe or any active circuitry on a protector circuit, a power source must be made available at the connector blocks and provided to each such probe circuit. Complicating this issue is the fact that probes and protector circuits can be provided in pair-at-a-time or cartridge (multi-line) configurations.
Conventional protector circuits are passive insofar as they do not require a voltage source to drive their circuitry. Rather, such circuits react to over voltages or over currents in a given telephone line pair to affect a temporary disruption in service in response to a transient, or to permanently ground the line as a failsafe mode in response to a more extreme surge condition (e.g., by a lightning strike or dropped high-voltage power line).
In the event that the protector circuit is provided with an active component, such as an indicator as disclosed in co-pending U.S. Patent Application Ser. No. 09/183,368, filed concurrently herewith for “PROTECTOR CIRCUIT WITH LED FAILSAFE INDICATOR,” then a high potential signal must be provided to the circuit to drive its components. Such active circuitry requires a separate power supply and/or a high-voltage line to the connector block at the mounting bracket. In either case, additional wiring is required which is generally undesirable in an environment in which hundreds of telephone lines are typically brought together.
What is needed in the art, and has heretofore not been available, is a power bus provided within a conventional connector and, further, a Z-type connector which includes such a high-voltage power bus. What is also needed in the art, and has heretofore not been available, is a bus bar provided on a connector block mounting frame for energizing circuitry associated with the wires and cables at the mounting frame.
SUMMARY OF THE INVENTION
In one illustrative embodiment of our invention a mounting bracket for a connector block of the type having an elongated wall is provided and a plurality of spaced fingers extend therefrom, with each of the fingers having a portion shaped to support the connector block. An insulation is provided along at least one surface of one or more of the fingers and a conductor is supported in spaced relation to the fingers upon or within the insulation. The conductor has an exposed contact at, below, or generally proximate the portion of the finger which supports the connector block. In preferred implementations, the insulation is provided on each of the fingers and the conductor is disposed within the insulation.
Another illustrative aspect Of our invention provides a connector block of the type including a body and at least one end cap supported on the body, wherein the end cap houses a plurality of terminals with conductive contacts extending therefrom into the body. A conductive power bus, including a rail, a plurality of fingers and a leaf-spring tail, is coupled to the connector block with the power bus positioned clear of electrical contact with the terminals or the conductive contacts. The power bus rail is seated within the connector block between the body and the end cap; the power bus fingers extend within the body from the rail and are positioned between the conductive contacts; and the power bus leaf-spring tail extends external of the body. In preferred implementations, the leaf-spring tail is normally biased away from the body, and the leaf-spring tail is generally proximate a fastener on the body, which fastener is shaped to engage a mounting bracket, such as the inventive mounting bracket described herein.
The invention may be embodied as a connector including a mounting bracket and a connector block which cooperate to transfer electrical signals therebetween. The mounting bracket supports a power line, and has taps at a plurality of contact points. The connector block includes a bus bar having a tail extending exteriorly thereof. The tail is positioned to engage the contact points of the mounting bracket and tap into the power line when the connector block is connected to the mounting bracket.
The invention also may be embodied as a combination of a mounting bracket and a connector block, with or without associated subcircuits such as protector and diagnostic circuits.
The inventive mounting bracket and connector block cooperate to transfer power or other signals therebetween, for example, to energize subsystems such as protector circuits that may be coupled to the connector block.


REFERENCES:
patent: 3491267 (1970-01-01), Goshorn
patent: 5160273 (1992-11-01), Carney
patent: 5595507 (1997-01-01), Braun et al.
patent: 5779504 (1998-07-01), Dominiak et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mounting bracket and power bus for a connector block does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mounting bracket and power bus for a connector block, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mounting bracket and power bus for a connector block will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2512090

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.