Mount with dual stiffness

Spring devices – Vehicle – Elastomeric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C267S006000, C267S269000, C267S153000

Reexamination Certificate

active

06659438

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a mount for supporting a frame and more specifically the invention relates to a mount having a resilient portion and at least one collapsible void provided in the resilient portion, the mount having a first substantially constant stiffness under loading that does not cause the at least one void to be closed and a second substantially constant stiffness under loading which substantially closes the at least one void.
BACKGROUND OF THE INVENTION
Vehicles, such as trucks which haul cargo have a trailer portion that is supported by a frame. The frame, in turn, is supported in part by a number of spring members such as leaf springs where each spring member extends between longitudinally adjacent ends of parallel wheel axle with the ends of each leaf spring being made integral with the axle ends.
In order to control the vehicle's vibrational dynamics a bearing or mount is supported on the leaf spring and is connected to the vehicle frame and the spring. The axles are isolated from the frame through the mounts. Transmission of the disturbances from the wheels to the frame is limited by the mounts.
It is most desirable to the vehicle driver to have vehicle mounts that are relatively soft when supported load is at a minimum and are relatively stiff when the supported load is at a maximum. Such a mount would provide the greatest comfort to the vehicle driver and would also improve load stability. Most frequently, prior art mounts for vehicle suspensions have a single stage stiffness that provides the same, single stiffness to the vehicle suspension regardless of the load being supported by the vehicle frame. Such prior art mounts are designed to support large vehicle loads.
Because prior art mounts comprise a single spring rate, the natural frequency of the system varies undesirably as the load supported by the frame is increased and decreased. It is well known to those skilled in the relevant art that the natural frequency of any vibratory system, &ohgr; is equal to the square root of the stiffness of the system spring, k divided by the mass of the system, m. In equation form this relationship may be set forth as &ohgr;=k/m where the natural frequency is expressed in cycles per second. Applying this relationship of spring stiffness and mass to current vehicle suspension systems, when the spring rate is constant, the natural frequency of the system decreases as the loading increases, and the natural frequency increases as the magnitude of the load decreases. However, because the single spring rate of prior art mounts is designed to support a loaded frame, the stiffness of the prior art mounts of vehicle support systems is much greater than desired between the minimum and maximum loading conditions.
As indicated hereinabove, in the most desirable vehicle support systems the vehicle suspension is relatively soft when the frame is unloaded and the system stiffness increases as the vehicle is loaded. However such suspension systems with a variable stiffness comprise complicated, expensive devices with a large number of component parts. One type of variable stiffness device for a vehicle suspension comprises multiple mounts arranged in a series relationship. In such devices, the first of the serially arranged mounts is actuated during a first loading range and then the other mounts are actuated as the magnitude of the loading increases and the limits of the actuating loads are exceeded. As the loading increases the first spring element bottoms out, activating the second element of the series, and in combination the elements provide an increased spring rate. In other mounts that provide variable stiffness, the stiffness is modified pneumatically.
Prior art spring or damping elements comprise resilient portions that include one or more cores or voids in order to significantly reduce the stiffness of the spring element in the cored directions. Such spring elements are used to control the motion of the supported device which may be a vehicle engine for example. As the supported device is displaced, the magnitude and direction of such displacement may cause the voids in such prior art spring elements to partially or fully close thereby increasing the stiffness of the spring to limit further displacement of the supported device. A forced displacement of the device may be of such significant magnitude and direction that the voids are closed by the displacement. By closing the voids the displacement of the device reaches its maximum and the displacement is abruptly stopped or “snubbed” by the spring element. The stiffness is changed in a non-linear manner, and such changes in stiffness are temporary. Thus in response to a forced displacement such spring elements temporarily and variably increase spring stiffness to limit displacement of a device, and the stored energy in the spring element returns the supported device to the desired location. The prior art spring elements do not provide a first substantially constant stiffness during a first loading range and a second substantially constant stiffness during a second loading range. Additionally, in such prior art spring elements any changes in the stiffness of the spring element are temporary as such devices serve to limit displacement rather than to support static loads.
In summary, such attempts at providing a mount for a vehicle suspension that has an adjustable or dual rate stiffness have resulted in mounts with designs that are complex, expensive and comprise a large number of component parts. Mounts that provide a single constant stiffness are too stiff when the vehicle is unloaded. Other springs serve to variably change spring stiffness in order to limit displacement rather than support static loads.
The foregoing illustrates limitations known to exist in present mounts and vehicle suspension systems. Thus, it is apparent that it would be advantageous to provide an alternative mount suitable for use in a vehicle suspension system where the mount has greater than one constant stiffness and comprises a relatively uncomplicated design. Accordingly, a suitable alternative mount is provided including features more fully disclosed hereinafter.
SUMMARY OF THE INVENTION
In one aspect of the present invention this is accomplished by providing a mount comprising a first attachment member a second attachment member spaced from the first attachment member; and at least one resilient member joining the first and second attachment members, each of the at least one resilient members including at least one void, said at least one void being collapsible under loading between a first open void condition where the mount has a first substantially constant stiffness, and a second collapsed condition where each of the voids is substantially closed, the mount having a second substantially constant stiffness when the at least one void is in the second condition.
The mount of the present invention provides a first substantially linear stiffness when the load supported by the frame is of a magnitude between a minimum load value and a predetermined Transition Load. The mount of the present invention provides a second substantially linear stiffness when the load supported by the frame is of a magnitude between the predetermined Transition Load and a maximum load condition. The first and second stiffness values are substantially constant. The second substantially constant stiffness supplied by the mount is significantly greater than the first substantially constant stiffness. When the load supported by the frame is increased to a magnitude at or above the Transition Load, the mount stiffness is abruptly increased to the second substantially constant stiffness and when the load is reduced in magnitude to a magnitude below the Transition Load, the stiffness is abruptly reduced from the second mount stiffness to the first mount stiffness.
The mount of the present invention may comprise a plurality of resilient layers with stiffening members or shims separating each adjacent resilient layer. The shims promote the sig

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mount with dual stiffness does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mount with dual stiffness, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mount with dual stiffness will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3177627

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.