Moulded part and flexible film with a protected printed...

Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Rod – strand – filament or fiber

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S375000, C174S0720TR, C174S254000

Reexamination Certificate

active

06426143

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a shaped part and to a flexible film with a protected conductor track, in particular, made from copper, and also to a process for their production. The shaped plastic part or the flexible film is composed at least of a plastic film as backing layer, of a metalizable primer layer applied thereto, and of a structured, metallic electrically conducting layer, in particular electrical conductor tracks, applied to the primer layer, where an additional outer film or a plastic article has been firmly connected to the composite made from backing layer, primer layer and conducting layer in such a way that the backing film or the plastic article covers at least part of the conducting layer.
BACKGROUND OF THE INVENTION
Many different types of platinae and of printed circuits have become known in the electrical engineering sector. In particular, various proposals have been made for the production of flexible circuits, i.e. electrical circuits applied to flexible plastics as backing.
Flexible circuits can be produced as given in the Patent Application WO 87/01557, by using screen printing technology to print a backing film with a conducting paste, for example based on silver powder, copper powder or nickel powder and/or graphite in the form of the circuit layout desired. These circuits have the disadvantage that the conductive pastes used have modest electrical properties and cannot be soldered.
U.S. Pat. No. 4,710,419 has disclosed an injection-moulded circuit which is produced from a copper-laminated foil by printing with a developable resist, back-moulding the film with a thermoplastic and using chemical etching to remove the copper layer not covered by resist layer. The disadvantage of this circuit is that the copper layer can break when exposed to stress and the adhesive layer has electrical and thermal properties which are disadvantageous for the copper film. The etching process is comparatively complicated and, besides this, the resist layer has to be removed in an additional operation at soldering points to allow adhesion of the solder.
European Patent EP 485 838 A2 has disclosed injection-moulded printed circuit boards which are produced by back-moulding of flexible electronic circuits with thermoplastics, where the conductor tracks are produced on the flexible backings used by direct additive or semiadditive metalization. The flexible backings used here have firmly adhering conductor tracks produced on their surfaces by printing the flexible backing with a screen-printing paste comprising a metalizing activator in the shape of the conductor track layout, drying the applied print of the conductor track layout and finally producing a copper layer in the shape of the printed conductor track layout with a height of from 0.05 to 10 &mgr;m in a chemical, currentless copper bath. To produce the rigid circuit the film is back-moulded with plastic.
The conductor tracks produced in this way have the disadvantage that the copper conductor tracks are open and unprotected and typically have to be oxidation-protected by a very fine layer of nickel.
An object of the invention was to develop a flexible film which carries electrical conductor tracks which have been provided in a simple manner with mechanical protection or oxidation-protection. In particular, it should be possible to provide even a three-dimensionally shaped film or a corresponding moulding which has a protected electrical conductor track and in which the function and structure of the conductor track are retained in the three-dimensional form.
Another object of the invention was to develop a moulding or a film-which comprises, in integrated form, mechanically protected screening with respect to electromagnetic radiation, preferably in the range from 1 MHz to 500 GHz.
DESCRIPTION OF THE INVENTION
The object is achieved by means of a flexible film with a protected conductor track, which is the subject matter of the invention, composed at least of a plastic film as backing layer, of a metalizable primer layer applied thereto, and of a structured, metallic electrically conducting layer, in particular electrical conductor tracks, applied to the primer layer, characterized in that an additional outer film has been firmly connected to the composite made from backing layer, primer layer and conducting layer in such a way that the outer film covers at least part, in particular at least 95%, of the conducting layer.
The outer film is preferably composed of a thermoplastic.
The thermoplastic outer film has preferably been directly welded or adhesive-bonded to the plastic backing film at free locations between the tracks of the conducting layer.
In one version, the outer film is composed of a thermosetting plastic, in particular of a polymer selected from the group consisting of UF (urea/formaldehyde resins), PF (phenol/formaldehyde resins), EP (epoxy resins), PI (polyimides) and polyacrylate, preferably polydimethyl methyl metacrylate (PMMA).
The thermosetting outer film has preferably been directly adhesive-bonded to the plastic film at free locations between the tracks of the conducting layer.
A particularly advantage of the novel film is that it can be shaped three-dimensionally. A process of shaping the film printed with the primer, for example deep drawing or blow moulding, before application on the metal layer, enables embossed-in structures to be obtained, even with a three-dimensionally shaped film (e.g. a hollow shape or shell), which has, after metalizing, functional conductor tracks of a particular structure.
The electrically conducting layer of the film has, in particular, a thickness of from 0.1 to 40 &mgr;m, preferably from 0.5 to 20 &mgr;m, particularly preferably from 1 to 5 &mgr;m.
The electrically conducting layer is preferably composed of a metal suitable for currentless metalization, in particular of Cu, Ni, Ag, Au or Pd, preferably Cu and Ni, particularly preferably Cu, alone or in any desired combination.
The invention also provides a shaped plastic part with an embedded protected conductor track, composed at least of a plastic film as backing layer, of a metalizable primer layer applied thereto, and of a structured, metallic electrically conducting layer, in particular electrical conductor tracks, applied to the primer layer, and of a plastic article, characterized in that the plastic article has been firmly connected to the composite made from backing layer, primer layer and conducting layer in such a way that the plastic article covers at least part, in particular at least 95%, of the conducting layer.
The plastic article is preferably composed of a thermoplastic, in particular of the same material as the plastic backing film.
Preference is given to a shaped plastic part made from a thermoplastic, in the case of which the plastic article has been directly welded or adhesive-bonded and/or has been connected by injection moulding, and in particular has been directly connected to the conducting layer by injection moulding.
In a preferred version the plastic article is composed of a thermosetting plastic, in particular of a plastic selected from the group consisting of UF (urea/formaldehyde resins), PF (phenol/formaldehyde resins), EP (epoxy resins), PI (polyimides) and polyacrylate, preferably PMMA.
The plastic article made from a thermoset has preferably been directly adhesive-bonded to the plastic film at free locations between the tracks of the conducting layer.
Preference is given to a shaped plastic part, in the case of which the composite made from plastic film, from metalizable primer layer and from electrically conducting layer has a three-dimensional shape. In a manner similar to the build-up of the three-dimensionally shaped flexible film, the shaped plastic part may also be given a three-dimensional shaping of the conductive tracks by shaping the flat film to correspond to a desired profile, after application of the primer layer and before metalizing, then producing the electrically conducting track by metalization and then connecting the composite made from fil

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Moulded part and flexible film with a protected printed... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Moulded part and flexible film with a protected printed..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Moulded part and flexible film with a protected printed... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2832317

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.