Motor vehicle air bag and fabric for use in same

Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Woven fabric – Woven fabric is characterized by a particular or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C139S408000, C139S419000, C139S42000D, C139S421000, C139S423000, C442S076000, C442S104000, C442S164000, C442S168000, C442S181000, C442S182000, C442S189000, C442S206000, C442S207000, C442S208000, C442S218000, C442S286000, C280S728100

Reexamination Certificate

active

06632753

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to air bags of the type utilized in vehicle occupant restraint systems.
Motor vehicles in service today are commonly equipped with air bag systems to supplement the protection provided by seatbelts. These air bag systems utilize at least one folded air bag in fluid communication with a source of inflation gas. A sensor is provided to detect a collision between the vehicle and another object. When such a collision is detected, the sensor actuates the source of inflation gas. As a result, the air bag is rapidly expanded to absorb at least a portion of the collision force that is would otherwise have been imparted to the vehicle occupant.
Traditionally, a folded air bag is housed in the steering wheel and expanded when a collision is detected so as to protect the driver. A second air bag has been housed in the dash to protect an occupant located in the front passenger seat. In either case, it is important to design the air bag such that it will quickly deflate after it is inflated by the inflation gas. As a. result, the air bag will collapse in a controlled manner as it is impacted by the vehicle occupant. Adequate support will thereby be provided to the vehicle occupant without excessive rebounding.
Due to various considerations, driver side air bags and passenger side air bags have often been constructed of different materials. For example, passenger side air bags have often been constructed of uncoated fabric. Driver side air bags, in contrast, have frequently been constructed of a base fabric woven from either nylon or polyester yarns, which have been coated with an appropriate elastomeric material to reduce permeability. Both passenger side and driver side air bags are often equipped with relatively large vent holes through which the inflation gas is expelled.
In addition to driver side and passenger side air bags, many vehicles are now being equipped with side cushions (or “side bags”), side curtains, or both. Side cushions are typically mounted in the outboard side of the seat, whereas side curtains are typically mounted along the roof rail of the vehicle. The side cushions are useful in protecting the middle and lower abdomen region of the occupant's body. Side curtains shield against breaking window glass and offer a degree of protection to the occupant's head.
In contrast to driver side and passenger side air bags, both side cushions and side curtains must remain inflated for relatively lengthy periods of time for continuous protection of the vehicle occupant. This is because the side of the vehicle is vulnerable upon impact to penetration of another vehicle or object. Thus, it is not unusual for vehicle manufacturers to require devices designed for side impact protection to remain inflated for several seconds.
The art has provided three primary techniques for the production of side curtains. The first such technique is to produce a one-piece side curtain using a jacquard loom. The one-piece curtain is coated with a suitable silicone or urethane to increase its air holding capability. A layer of nonwoven material is provided on the outside of the curtain nearest the door window to inhibit glass penetration. While these cushions have worked well for their intended purpose, jacquard looms are generally much more expensive than standard flat weaving equipment. In addition, it is relatively difficult to coat a one-piece curtain.
Second, the art has provided side curtains made from flat fabrics that have been coated with silicone. Pieces of the coated fabric are sewn together to yield a bag of the desired shape. One drawback of this approach is that the seams must generally be treated with a silicone spray or adhesive to plug the sew holes.
A third technique involves the production of side curtains using flat fabric coated with urethane. One advantage of urethane-coated fabric is that it can be welded to itself using RF technology or heat, thus eliminating the need to sew pieces of the coated fabric together. While a relatively thick coating of urethane is necessary in order to produce good welding, urethane-coated fabric is generally less costly than the use of a silicone-coated coated fabric which must be sewn.
It is desirable for the base fabric of a urethane-coated material to be made from a finer denier yarn in order to meet packaging requirements. This is because a urethane-coated material in which the base fabric is made from yarn of 630 denier (630d) or higher will often be too bulky for folding and packaging in the vehicle's roof rail. As such, fabrics made from yarns of smaller denier (such as 525d, 420d, 315d or 210d) are considered more desirable for side curtain applications.
One significant problem, however, has been noted with the use of base fabrics made from finer denier yarns. Specifically, the welded strength of the seam can exceed the strength of adhesion of the coating to the fabric. As such, the urethane coating may have a tendency to peel away from the base fabric. Better adhesion can be achieved with a looser weave, but a looser weave may adversely affect the strength characteristics of the resulting material. In addition, the urethane may simply bleed through the interstices of a loosely woven material during the coating process. Furthermore, even if successfully applied, the urethane coating may have a greater tendency to crack open if the base material is loosely woven.
SUMMARY OF THE INVENTION
The present invention recognizes and addresses the foregoing disadvantages, and others, of prior art constructions and methods.
Accordingly, it is an object of the present invention to provide an improved air bag for use in a motor vehicle.
It is a particular object of the present invention to provide an improved vehicle air bag for use in a side impact protection system.
It is a more particular object of the present invention to provide a side curtain made from an improved urethane-coated fabric.
It is also an object of the present invention to provide various novel fabrics, both coated and uncoated, for use in vehicle air bags.
Some of these objects are achieved by a vehicle air bag for use with an on-board inflator mechanism. The air bag has at least one panel of coated air bag fabric comprising a base fabric coated with an elastomeric coating material. The base fabric is woven in warp and fill (weft) directions from synthetic multifilament yarns. In at least one of the weave directions, the yarns comprise first yarns of a first yarn size and second yarns of a second yarn size, with the second yarn size being a lesser yarn size than the first yarn size. The first yarns and the second yarns are in predetermined positions in the base fabric to produce a crest and trough pattern on a surface thereof.
In some exemplary embodiments, the elastomeric coating material is a urethane coating material. In other embodiments, a silicone coating material may be utilized. The air bag itself may be configured as a side curtain air bag.
Often, the base fabric will be woven only from yarns having a size of no greater than 650 denier. The first yarns and the second yarns may be arranged at predetermined yarn positions in the fill direction of the base fabric, the warp direction of the base fabric, or both fill and warp directions of the base fabric. For example, the first yarns and second yarns may be located in alternating yarn positions in a particular weave direction.
In some exemplary embodiments, the first yarn size may be chosen from the group consisting of 525 denier, 420 denier and 315 denier. In such embodiments, the second yarn size will be a smaller yarn size chosen from the group consisting of 420 denier, 315 denier and 210 denier.
Embodiments of the present invention are contemplated comprising third yarns of a third yarn size located at predetermined positions in at least the fill direction of the base fabric. The third yarn size in such embodiments is a lesser yarn size than the second yarn size. If the first yarn size is 420 denier, for example, the second yarn size may be 31

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Motor vehicle air bag and fabric for use in same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Motor vehicle air bag and fabric for use in same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Motor vehicle air bag and fabric for use in same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3124111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.