Motor having single cone fluid dynamic bearing balanced with...

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S090500, C384S107000

Reexamination Certificate

active

06686674

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
The present invention relates to a fluid dynamic bearing motor, and more particularly to a fluid dynamic bearing having a conical shape to enable the motor to be smaller in thickness and lower in cost.
2. Description of the Related Art
There has been a trend toward the fluid dynamic bearing motor as the power source for rotary memory devices, cooling fans, and the like, because of its quietness in operation and the necessity to reduce nonrepeatable runout (NRRO) of rotating parts. Portable applications of such electronic devices have been widespread, increasing the demands for further reduction in their thickness and required current. However, there are limitations on further reduction in thickness of the fluid dynamic bearings, because they need to have a certain span between the bearings for supporting the shaft in order to inhibit NRRO. Also, in order to maintain a constant clearance between the bearings, they must be machined with extreme precision in the order of submicrons, whereby it is difficult to produce them at low cost.
In order to make fluid dynamic bearings thinner, a novel structure is necessary which does not require two bearings for supporting the shaft at axially spaced positions. The bearings should have as little sliding area as possible so as to achieve a reduction in the required current. Further, cost reduction will be achieved through the development of a structure wherein the bearing clearance is maintained with necessary accuracy even with the components machined with a lower degree of precision.
Single cone fluid dynamic bearings, which can support loads of both radial and thrust directions, have attracted attention as having potentialities in many respects. However, while some single cone structures that help decrease the thickness of the bearing have been proposed, for example, in Japanese Laid-open Utility Model Publication No. Hei. 06-004731, these are for air dynamic bearings and anyway have not been very successful. The main reason is that the single cone bearing is structurally incapable of sufficiently inhibiting NRRO during rotation. Japanese Laid-open Patent Publications No. 2000-004557 and No. 2000-205248 propose combined use of a conical bearing and a cylindrical bearing to improve the overall performance. However, the cylindrical bearing requires high-degree machining precision for maintaining a constant bearing clearance, canceling out the advantages of the conical bearing. U.S. Pat. No. 5,854,524 discloses a single semi-spherical air dynamic bearing having a similar structure as that of the single cone bearing, but in this case also, the radius of two spherical surfaces must be strictly controlled to secure a sufficient radial load capacity, because of which cost reduction is hardly achievable.
Thus the problems yet to be resolved in single cone fluid dynamic bearing motors are how to improve the stability in its rotating attitude, and how to realize a structure which prevents leakage of the lubricant and yet is easy to assemble.
SUMMARY OF THE INVENTION
An object of the present invention is to resolve these problems and to provide a single cone fluid dynamic bearing motor which can be reduced in thickness and required current, and is simple and can be produced at lower cost.
A fluid dynamic bearing motor according to a first aspect of the present invention includes a shaft having a diminishing conical taper surface, a sleeve having a conical concavity opposite the shaft, lubricant filled in a clearance between the shaft and the sleeve, and means for generating magnetic attraction between the shaft and the sleeve. In this construction, a series of grooves are formed on a conical taper surface of one of the shaft and the sleeve, and the grooves are provided for creating load capacity when the motor rotates, whereby rotating parts of the motor are supported by axial components of the load capacity balanced with the magnetic attraction.
The clearance between the shaft and the sleeve at their peripheries increases in width toward outside to form a taper seal of the lubricant utilizing its surface tension. The magnetic attraction is developed by a stator core arranged on the fixed side and an opposite rotor magnet, or by a rotor magnet and a magnetic piece fixed opposite to the rotor magnet. Apart from the opening on the outer peripheral surface, the motor has no joints through which lubricant may possibly leak to the outside.
According to the fluid dynamic bearing motor of the present invention, the load capacity created by the rotation of the motor acts vertically with respect to the conical surfaces, causing the shaft and the sleeve to rotate in non-contact relationship at a position where the axial components of the load capacity and the magnetic attraction are in equilibrium. The radial components of the load capacity counterbalance each other at respective circumferential points, thereby contributing to the centering of the rotating parts. The load capacity itself acts vertically on the tapered surface of the cone, and therefore it serves to adjust the attitude of rotating parts when they tilt with respect to the fulcrum conforming to the cone apex.
The main reason why the prior art single cone bearing has failed to maintain the attitude of rotating parts is that the bearing was provided only with a load equal to the weight of its own, or even less than that by using a magnetic bearing in order to avoid friction during the initial and final periods of operation as disclosed in Japanese Laid-open Utility Model Publication No. Hei. 06-004731. As has been explained above, a good balance is achieved between two forces of the axial component of load capacity of the bearing versus the load. Therefore, a small load can only create a small load capacity, which is insufficient to create forces for maintaining stable attitude of rotating parts. In the fluid dynamic bearing of the present invention, a large load is applied on the bearing by the magnetic attraction acted between the shaft and the sleeve. Therefore, the load capacity of the bearing, which counterbalances-the-load, can be set to-a desired-large value, whereby the stability of the attitude of rotating parts is improved. The magnetic attraction may be varied case by case depending on permissible level of NRRO, the size of the motor, and various other conditions.
A fluid dynamic bearing motor according to a second aspect of the invention includes a shaft having a diminishing conical taper surface, a sleeve having a conical concavity opposite the shaft, lubricant filled in a clearance between the shaft and the sleeve, means for generating magnetic attraction between the shaft and the sleeve, and an annular wall arranged around the shaft to face an outer circumferential wall of the sleeve, a clearance between the annular wall and the outer circumferential wall of the sleeve being increased in width toward an open end to form a taper seal of the lubricant. In this construction, a plurality of grooves are formed on a conical taper surface of one of the shaft and the sleeve, and the grooves are provided for creating load capacity when the motor rotates, whereby rotating parts of the motor are supported by axial components of the load capacity balanced with the magnetic attraction. The boundary of the lubricant is positioned around the sleeve, so as to enable a reliable seal to be formed even in high-speed operation.
A ring-shaped member is fixed to one end of the annular wall which is arranged around the shaft, and an annular recess is provided in the outer circumferential wall of the sleeve, the inner periphery of the ring-shaped member being positioned within the annular recess, so as to restrict an axial movable distance of the rotating parts. This structure serves as a stopper for the rotating parts in the case where the motor is subjected to a large shock.
The shaft includes a clearance adjusting piece held inside. The clearance adjusting piece is assembled with the shaft such that it is initially held movably but firmly

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Motor having single cone fluid dynamic bearing balanced with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Motor having single cone fluid dynamic bearing balanced with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Motor having single cone fluid dynamic bearing balanced with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3322110

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.