Motor energizing circuit

Electricity: motive power systems – Open-loop stepping motor control systems

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

318685, 318701, H02P 800

Patent

active

048684783

DESCRIPTION:

BRIEF SUMMARY
The present invention relates to an energizing circuit for a reluctance motor.


BACKGROUND OF THE INVENTION

The most usual manner of controlling commutation from one phase to another in reluctance motors, particularly so-called switched-type drive motors, is to use at least one rotor sensor which is adapted to produce control signals that correspond to the rotational position of the rotor in relation to the stator. This is referred to below as the rotor position. This means, however, that an additional element must be mounted on the rotor, which in practice has been found to encumber a number of drawbacks and to give rise to errors, particularly in troublesome environments.
Brushless d.c. motors which operate with variable reluctance are well known to the art. The type of reluctance motor for which the invention is intended comprises a stator on which one or more excitation windings are arranged in one or more phases, with separate energizing or activation of the winding belonging to the respective phases. Both the stator and the rotor are normally provided with pronounced poles or teeth. The rotor has no winding. The stator and the rotor form a magnetic circuit for generating a mechanical torque which is substantially proportional to the square of the magnetomotive force of the excited or activated winding and to the permeance change time, which is a function of the movement of the rotor in the motor. Movement of the rotor relative to the stator generates a variation in the reluctance and therewith the permeance in the magnetic circuit of the stator winding.
Torque is only obtained in the drive direction of the motor when the magnetomotive force of the winding is maintained for a rotor position period in which the permeance increases with rotor movement. Consequently, it is desirable to hold each winding energized solely during one such period for this winding. For reasons pertaining to drive techniques it is convenient, although not fully necessary, to energize or activate solely one stator phase at a time, i.e. with no overlap between the phase energizations. Commutation from one phase to another can be effected so that each phase winding is energized or activated during a rotor position period in which the permeance increases with rotor position changes. The supply to each phase winding should be discontinued, or decreased, during each rotor position period in which the permeance decreases with rotor position change. As beforementioned, the most usual method in this regard is to use additional rotor sensors for sensing continuously the position of the rotor and controlling the energizing or power supply with the aid of a sensor-controlled circuit. There is a general desire, however, to find ways and means which will allow these rotor position sensors to be dispensed with. Consequently, several attempts have been made to utilize the variation of the current or voltage characteristics of the stator windings and surrounding circuits to provide an indication of suitable points of time at which the supply voltage can be switched on and off.


BRIEF DESCRIPTION OF THE PRIOR ART

In one known reluctance motor control system, described in U.S. Pat. No. 3,980,933, there is sensed the electro-motive force (EMF) which is induced in the stator winding when the rotor rotates and when the output from a switching device is non-conducting. The output of the switching device is made conductive when the EMF reaches a given level. A considerable bias current is required with this motor, in order to provide sufficiently wide margins. This results in power losses. Furthermore, since no energizing current is delivered to the winding during that time period in which the rotor position is sensed, it is not possible to load the motor to its maximum. Consequently, a driving or energizing current must be applied constantly to one of the phase windings. In order to be able to load the motor to its maximum, an energizing current must be provided at all times in some of the phase windings.
In the case of another reluctance motor

REFERENCES:
patent: 4611157 (1986-09-01), Miller et al.
"Inverter Drive for Switched Reluctance Motor: Circuits and Component Ratings", IEE Proc., vol. 128, No. 2, Mar. 1981, by R. M. Davis et al., pp. 126-136.
"Waveform Sensing Closes the Loop in Step Motor Control", Production Engineering, Feb. 1977, by J. R. Frus et al., pp. 47-49.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Motor energizing circuit does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Motor energizing circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Motor energizing circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-370740

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.