Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
1998-11-30
2001-03-06
Wu, Daniel J. (Department: 2632)
Communications: electrical
Condition responsive indicating system
Specific condition
C340S686100, C340S689000, C200S06145M
Reexamination Certificate
active
06198396
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a motion sensor, and, more particularly, to a motion sensor used to detect whether an object or body to which the motion sensor is attached has become motionless.
BACKGROUND OF THE INVENTION
A number of motion sensors incorporating a ball within a housing have been developed over the years. For example, U.S. Pat. Nos. 3,742,478 and 4,196,429 describe motion sensors in which an electrically-conductive ball is confined for movement within a generally cylindrical container. On an inner surface of the container (either on the cylindrical side wall or on one or both of the end walls), two sets of elongated contacts are formed, the contacts of each set being interspaced or interlaced with those of the other set. The ball is able to bridge an adjacent pair of contacts to form an electrical connection between the two sets. As the device is moved, the ball rolls over the contacts, successively making and breaking connections between the two sets. This motion is detected by a circuit coupled to the contacts, and an alarm is then sounded.
The designs of U.S. Pat. Nos. 3,742,478 and 4,196,429 have a number of drawbacks. For example, a false alarm can arise from slight vibrations. A third set of contacts introduced to solve this problem in one embodiment of U.S. Pat. No. 3,742,478 results in a complicated electrode arrangement and makes the sensitivity of the device dependent upon the position of the ball prior to movement. Moreover, because the measuring circuit of those designs rely upon the ball thereof bridging adjacent contacts, the contacts have to be raised above the surface upon which the ball rolls. The movement of the ball and, accordingly, the sensitivity of the motion sensor is thus impeded. Furthermore, the elevated contacts result in a tendency of the ball to ride along between contacts rather than over the upper surfaces thereof, thereby preventing the alarm from sounding.
An improved motion sensor is described in U.S. Pat. No. 4,688,025, the disclosure of which is incorporated herein by reference. In one embodiment, that sensor comprises a ball confined within a cylindrical housing. The cylindrical housing comprises a side wall carrying a first set of electrical contacts and a second set of electrical contacts and an end wall carrying terminal means. The contacts of the side wall are preferably formed flush with the inner circumference of the side wall. During movement, the ball successively electrically connects the first set and the second of contacts with the terminal means. The sensor of U.S. Pat. No. 4,688,025 further includes a circuit for producing an alarm signal in response to detecting such successive connections.
Not only is the sensor of U.S. Pat. No. 4,688,025 well designed for the detection of motion, it also finds an important use as a detector for lack of motion. In that regard, the motion sensor of U.S. Pat. No. 4,688,025 is used in the FireFly® Personal Alert Safety Systems (PASS) available from Mine Safety Appliances Company of Pittsburgh, Pa. See, for example, Mine Safety Appliances Company Bulletin Nos. 0119-19, 0119-07, and 0119-06, as well as Mine Safety Appliances Company Data Sheet 01-00-22, the disclosures of which are incorporated herein by reference. The motion sensor of these PASS devices cause both audible and visual alarms to be activated if movement by a person wearing the PASS device ceases for a predetermined period of time. Likewise, U.S. Pat. No. 5,781,118, the disclosure of which is incorporated herein by reference, discloses a self-contained breathing apparatus having a PASS device wherein the motion sensor of U.S. Pat. No. 4,688,025 is integrated therewith.
PASS devices as described above are used, for example, as a safety device by firemen who may be overcome by smoke or toxic fumes while fighting a fire. Should such a fireman be overcome and cease movement, the PASS device provides an alarm to others so that a rescue can be effected. Recently, revisions to the National Fire Protection Association (“NFPA”) Standard for PASS devices (NFPA 1982, 1998 Edition) were approved. As part of these revisions, the timing requirements for the detection of lack of motion are to be changed. In that regard, PASS devices will have to meet a tighter timing tolerance for the alarm.
It is thus very desirable to develop motion sensors that will meet and exceed the timing requirements of the NFPA Standard for PASS devices.
SUMMARY OF THE INVENTION
Generally, the present invention provides a motion sensor comprising: a first ball which is electrically conductive; at least one additional ball which preferably is not electrically conductive and which damps the motion of the electrically-conductive ball; a housing to confine the movement of the first ball and the additional balls; a plurality of electrical contact elements within the housing, the electrically-conductive ball being capable, during movement within the housing, of successively, forming electrical connection with the electrical contact elements within the housing; and detection circuitry in electrical connection with the electrical contact elements to detect if the electrically-conducting ball is moving.
Preferably, the housing comprises a substantially cylindrical structure having a side wall and at least a first end wall. The electrical contact elements preferably comprise a first set of electrical contact elements and a second set of electrical contact elements disposed on the side wall. The electrical contact elements are preferably spaced around the inner circumference of the structure with the electrical contact elements of the first set interlaced or interspaced with the electrical contact elements of the second set.
The motion sensor preferably further comprises a first terminal carried by the end wall. During motion of the electrically-conductive ball, it successively electrically connects the electrical contact elements of the first set and the second set with the first terminal. The motion sensor preferably further comprises an alarm signal generating circuit coupled to the electrical contact elements and to the terminal to produce an alarm signal in response to lack of motion of the electrically-conductive ball.
The additional ball or balls are preferably formed from a nonconductive material such as nylon and act to damp the motion of the electrically-conductive ball and thereby decrease the settling time without substantially decreasing the sensitivity of the motion sensor to movement by the object or person to which the motion sensor is attached. Alternatively they could be conductive balls which are covered with an electrically-nonconductive material such as teflon or plastic.
It has been discovered that by damping the motion of the electrically-conductive ball with at least a second ball within the housing of the motion sensor, the electrically-conductive ball comes to rest more quickly and consistently after motion of the object or person to which the motion sensor is attached ceases moving. This result is very desirable, for example, in a motion sensor used in connection with PASS devices. In such devices, it is desirable to activate an alarm within a specified time interval after movement of the person wearing the device stops. Too much damping, however, will adversely affect the sensitivity of the device which will result in more false alarms.
Other details, objects and advantages of the present invention will be readily apparent from the following detailed description of the invention.
REFERENCES:
patent: 3831163 (1974-08-01), Byers
patent: 4196429 (1980-04-01), Davis
patent: 4297683 (1981-10-01), Roberts
patent: 4688025 (1987-08-01), Frank
patent: 4884067 (1989-11-01), Nordholm et al.
patent: 4978946 (1990-12-01), Nordholm et al.
patent: 5025246 (1991-06-01), Schenkel
patent: 5332876 (1994-07-01), Romano et al.
patent: 609 839 (1926-08-01), None
patent: 2 535 060 (1984-04-01), None
Bartony, Jr. Henry E.
Mine Safety Appliances Company
Pham Toan
Uber James G.
Wu Daniel J.
LandOfFree
Motion sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Motion sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Motion sensor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2514364