Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Two or more radiation-sensitive layers containing other than...
Reexamination Certificate
2000-08-03
2001-08-21
Baxter, Janet (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Radiation sensitive product
Two or more radiation-sensitive layers containing other than...
C430S022000, C430S507000, C430S510000, C430S527000, C430S934000
Reexamination Certificate
active
06277548
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates in general to photography and in particular to a novel photographic motion picture print film element. More specifically, this invention relates to a motion picture print film having finely dispersed carbon particles incorporated therein, which print film is capable of being marked with a laser with improved performance.
BACKGROUND OF THE INVENTION
Marking of photographic film elements to provide, e.g., graphic elements, characters, bar codes or text is often desired in the photographic art. The showing of foreign language films in a motion picture theater, e.g., typically includes the simultaneous display of the translated dialogue in the form of marked subtitles. A current frequently used method of subtitle marking, described in U.S. Pat. Nos. 4,854,696 and 5,367,348, involves embossing or etching the subtitle text into the film's photographic emulsion image layer(s).
Marking is currently frequently done by laser ablation, wherein a laser beam of high energy travels along a determined path corresponding to the inscriptions to be formed on the film clement. In such method, the silver halide photographic emulsion present in the layer(s) coated onto the film support becomes ablated locally. Photographic color films comprise image dye-forming emulsion layers coated on a transparent support, and the marked or ablated areas comprise clear or low density areas surrounded by the unmarked dye-containing image areas. Similarly, for black and white films the marked or ablated areas comprise clear or low density areas surrounded by the unmarked image areas which contain silver metal. In the particular application of laser subtitling of photographic films, the quality of laser marked subtitles is dependent upon the density and color differences between the marks and the surrounding dye or silver image areas, and on the wavelength, power, and writing speed of the laser. The power and speed are selected to remove as much of image emulsion layers as possible without damaging or distorting the support. Laser subtitling is typically performed on the final color or black and white release print film intended for projection in a theater, but may also be performed on color intermediate or black and white films to form subtitle images which may then be optically printed onto another intermediate or black and white film to form a negative image, which may then be printed onto the final release print film.
Most laser subtitling systems were originally designed and optimized for marking motion picture films having acetate film base supports. A switch in the industry from acetate to polyester supports for motion picture print films has required the subtitlers to make changes in their operations to reoptimize results, which has been a problem as thermoplastic polymer support materials, such as polyester, are more succeptible to support damage. There is an inherent conflict between using sufficient power to mark in low density image areas without causing significant base damage in the high density image areas, as due to the non-uniform release of gelatinous residues or to the damage of the support, undesired dark and/or colored spots may be observed when the film image is enlarged and projected on the screen in a theater, especially for print films having polyester film supports.
SUMMARY OF THE INVENTION
It is an aim of the present invention to provide motion picture photographic film elements which provide improved performance when marked by means of a laser beam.
In accordance with the present invention there is provided a motion picture photographic film element comprising a support having on a front side thereof a subbing layer unit and one or more image-forming units comprising at least one light-sensitive silver halide emulsion layer coated over the subbing layer unit, wherein the layers coated on the front side of the support comprise in total from 5 to 30 mg/m
2
of dispersed carbon particles, and the majority of the dispersed carbon particles is contained in the emulsion layer or layers of the one or more image forming units or in intercoat layers which may be present between two emulsion layers.
In accordance with the preferred embodiment, there is provided a color motion picture print or intermediate film element comprising a support having on a front side thereof a subbing layer unit and yellow, magenta, and cyan dye image-forming units comprising light-sensitive silver halide emulsion layers coated over the subbing layer unit, wherein the layers coated on the front side of the support comprise in total from 5 to 30 mg/m
2
of dispersed carbon particles, and the majority of the dispersed carbon particles is contained in the emulsion layers of the yellow, magenta, and cyan dye image-forming units or in intercoat layers which may be present between two emulsion layers.
In accordance with a specific preferred embodiment of the present invention there is provided a color motion picture print film element comprising a support having on a front side thereof, in order, a yellow dye image-forming unit comprising at least one blue-sensitive silver halide emulsion layer having associated therewith at least one yellow dye-forming coupler, a first emulsion intercoat layer, a cyan dye image-forming unit comprising at least one red-sensitive silver halide emulsion layer having associated therewith at least one cyan dye-forming coupler, a second emulsion intercoat layer, and a magenta dye image-forming unit comprising at least one green-sensitive silver halide emulsion layer having associated therewith at least one magenta dye-forming coupler, wherein the layers coated on the front side of the support comprise in total from 5 to 30 mg/m
2
of dispersed carbon particles, and the majority of the dispersed carbon particles is contained in the emulsion layers and emulsion intercoat layers.
DETAILED DESCRIPTION OF THE INVENTION
Motion picture film photographic elements of the invention comprise a support having on a front side thereof a subbing layer unit and at least one silver halide emulsion layer. In preferred embodiments, the elements of the invention may include an antihalation undercoat in the subbing layer unit between the support and the silver halide emulsion layer(s), an outermost protective overcoat layer, an antistatic layer on either side of the support, and an outermost protective backcoat layer on the back side of the support.
The materials employed as the support member are synthetic high molecular weight polymeric materials. These materials may be comprised of various polymeric films, but polyester and cellulose triacetate film supports, which are well known in the art, are preferred. The advantages of the invention are particularly applicable when thermoplastic polymer supports, particularly polyester film supports such as poly(ethylene terephthalate), are used. For acetate supports, the use of dispersed carbon particles in accordance with the invention may advantageously allow good subtitling results to be obtained with lower power settings than previously required. The thickness of the support is not critical. Conventional support member thicknesses of from about 50 to 250 microns (2 to 10 mils, or 0.002 to 0.010 inches) can be employed, for example, with very satisfactory results.
The term “subbing layer unit” as used herein applies to layers of the photographic element coated between the support and the photographic emulsion layer closest to the support. Subbing layers coated between a support and the photographic imaging emulsion layers of a photographic element are conventionally employed in the art to provide improved adhesion of the imaging layers to the support, as well as other functionality such as antihalation or antistatic protection. As described in U.S. Pat. No. 4,132,552, e.g., it is often useful to employ a combination in the subbing layer unit of at least one hydrophobic “primer” layer directly contacting the film support and at least one hydrophilic layer coated thereupon. Polyester support members, e.g., typically
Barber Gary N.
Brick Mary C.
Haller Christopher J.
Anderson Andrew J.
Baxter Janet
Eastman Kodak Company
Walke Amanda C.
LandOfFree
Motion picture print film having improved laser subtitling... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Motion picture print film having improved laser subtitling..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Motion picture print film having improved laser subtitling... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2540608