Motion picture film projector

Optics: motion pictures – Camera and/or projector drive mechanisms – With intermittently driven carrier-engaging sprocket

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C352S165000, C352S204000, C352S208000, C352S210000, C352S212000, C396S493000

Reexamination Certificate

active

06513932

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to the design of light shutters as used in motion picture film projectors. More particularly, the present invention relates to improved shutter designs, which can be used in cinema projectors of standard design, as well as in projectors with improved Geneva Mechanisms and improved illumination systems.
BACKGROUND OF THE INVENTION
Generally speaking, the state of the art motion picture film projector is little changed from those produced in the 1950's, when the advent of robust color films and xenon arc lamps encouraged the manufacturer's to make design changes. The most basic mechanisms within film projectors, such as the intermittent drive, the shutter, and the projection lens, can be seen in the earliest patents; such as U.S. Pat. No. 93,594 (O. Brown, 1869). Although at present, some manufacturers are producing re-designed projectors with modularity, stepper and servo motor drives, and modern control circuitry, the basic system design is still relatively unchanged. Thus, there continue to be opportunities to make design improvements to a classic opto-mechanical system like the motion picture film projector.
In a standard projector, the film is intermittently advanced by a Geneva Mechanism, also known as a “Maltese Cross,” until an image frame is in alignment with the projection aperture. The film is then held stationary for a discrete time period during which light is passed through the aperture, film frame, projection lens, and onto a screen. This intermittent frame-by-frame motion of the film is enabled by the Geneva Mechanism, which comprises one portion, the driver, which rotates continuously, and which causes intermittent rotation of a second portion, the star wheel. In a motion picture projector the star wheel is mounted on a central shaft with a sprocket, the teeth of which are engaged with perforations in the film. Therefore, when the driver moves the star wheel, both the star wheel and the film experience a resulting intermittent motion. As motion picture film is typically projected at a rate of 24 frames per second, a new film frame is positioned in the projection aperture every {fraction (1/24)} second, or approximately 42 ms. The standard Geneva Mechanism used in cinema, much as described is U.S. Pat. No. 1,774,789 (Dina), moves each film frame into the projection aperture with an indexing time of one-fourth of the frame period, or approximately 10.5 ms.
It is necessary to block or shutter the light to the screen during these indexing times to prevent the perception of image smearing or travel ghost by the audience. The typical shutter used in a motion projector is a simple sheet metal disc, which has two blades whose edges extend radially from a center hub, which is mounted to a drive shaft. The shutter is typically positioned between the light source and the film gate, and periodically blocks the light incident to the film through the projection aperture. Shutter design involves a set of trade-off's around light efficiency, the perception of flicker, and the perception of travel ghost. It happens that human perception of flicker or strobing peaks near the 24 Hz operating frequency of film projectors. To prevent the perception of flicker, the typical shutter has two blades, thereby blocking the light twice per frame (one blockage corresponding to the film indexing time), which raises the apparent illumination frequency to 48 Hz, where flicker perception is significantly reduced. Some systems have even employed three bladed shutters, to yield an effective frequency of 72 Hz, where flicker is barely perceptible. In either of the above cases, these shutters operate at the same 24 Hz rate as the intermittent film driver, and indeed are typically directly linked to the film drive mechanism by a series of worm gears and drive shafts. Alternately, a single bladed shutter driven at 48 Hz or 72 Hz could be employed. Indeed, single bladed shutters are optimal relative to the maximization of screen light and the minimization of travel ghost. However, since single bladed shutters must rotate faster, they generate design, balance, and safety issues, such that they are rarely used. Shutter performance can also be improved by using a shutter disc with a larger diameter, or by positioning the shutter as close as possible to the film plane. In the first case, the shutter blade edges move faster to block the light than is the case for a smaller diameter shutter blade operating at the same speed, and the shutter closure time is reduced. However, size constraints within projector heads typically limit shutters to approx. 4 to 12 inches in diameter. Likewise, physical constraints usually cause the shutter to be positioned an inch or more back from the film gate. Alternately, a shutter with a conical profile has been used as the shutter blade can be positioned closer to the film gate, and the blade velocity across the aperture is more uniform. However, conical shutters have not been widely adopted.
It is a further requirement in shutter design that the multiple blades must be nearly the same size (within a few percent), or else perceptible flicker will be present. Thus, in a cinema projector system employing a standard Geneva mechanism which indexes the film in ¼ the frame time, the standard two bladed shutter then blocks 50% of the available light from reaching the screen. Thus, rather than make the shutter blades overly large to avoid the appearance of even the slightest amount of image smear, or “travel ghost,” projector manufacturers will use blades which are barely large enough, and then tolerate a small amount of travel ghost.
The perception of travel ghost is a function of both the rate of actual motion of the film as well as the amount of light available to illuminate the film during this motion. It is left to the projectionist to control travel ghost by carefully synchronizing the rotation of the shutter blade with the intermittent action of the Geneva mechanism film driver. For example, travel ghost image smear will appear at the top of the frame when the shutter is late in closing, and will appear at the bottom of the image when the shutter opens too early. Visible travel ghost can occur simultaneously at both the top and bottom of the projected image if both the shutter openings are too large and the shutter is mis-timed with both the beginning and end of the film movement.
A variety of improved shutter designs have been proposed to attempt to maximize light efficiency to the screen while minimizing flicker. For example, the improved shutter described in U.S. Pat. No. 1,700,513 (Porter) has secondary blades, which are mounted to the primary shutter blade disc, and which can be positioned to adjust the size of the shutter openings. By controlling the openings between the radially extending blades in this manner, this shutter is intended to allow both tuning of the light efficiency as well as adjustment for vari-speed projector operation. The shutter described in U.S. Pat. No. 1,884,605 (Dina) also uses a combination of two shutter discs, each with two radially extending blades, whose positions relative to one another can be adjusted to alter the size of the shutter openings, and thus tune available screen light and flicker. In comparison, U.S. Pat. Nos. 3,773,412 and 3,784,293 (Yang) respectively describe shutters with five and four irregularly spaced radially extending blades, where the designed variations in blade position and width are intended to allow maximization of screen light while minimizing flicker.
An alternate approach, described in U.S. Pat. No. 6,014,198 (Baumann) uses a moving plane parallel plate optical compensator, synchronized with the intermittent film movement, to remove the travel ghost effect during shuttering. Accordingly, the screen image of the film appears stationary during a small initial period of time in which the film is actually in motion out of the gate. As during this same initial time period, the shutter blade is already cutting through the illuminati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Motion picture film projector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Motion picture film projector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Motion picture film projector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3180127

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.