Motion detection and alerting system

Communications: directive radio wave systems and devices (e.g. – Presence detection only – By motion detection

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S104000, C342S114000, C342S115000

Reexamination Certificate

active

06700528

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to autonomous detection and alerting to motion, such as ice flow in a river. More particularly, it provides a sealed, inexpensive, fully integrated, remote, early-warning system for continuous detection and early warning of river ice flow hazards. It may be solar powered with battery backup, with an option for at least one battery to be solar rechargeable.
BACKGROUND
Alerting to a waterway's ice motion during winter frazil ice flow and spring ice breakup is important. The ability to detect river ice sheet and rubble motion can provide early warning to communities and facilities down-river, helping prevent the loss of life, flooding, and infrastructure damage often associated with massive ice rubble flows. Unfortunately, this information is often not available at all, and, when available, it may be hazardous, difficult, time consuming, and expensive to obtain.
Currently, there are three methods employed to detect movement of an ice sheet. The first, visual observation, requires the constant attention of a human observer. This method is particularly inefficient, as it can be hindered by darkness or by low-visibility weather conditions.
Video monitoring of the ice sheet is similarly limited by the short periods of daylight in northern latitudes in the winter, weather conditions and the need for the presence of both equipment and operator at the time the ice sheet moves. Video monitoring has the further disadvantage of requiring tedious, frame-by-frame motion analysis and the inclusion of known benchmarks in the video frame from which to measure or detect motion.
A third method uses a frangible wire embedded in the river ice to detect movement. When the ice moves, the wire breaks, opening a circuit and triggering an alarm. However, deploying the wire across the ice sheet or rubble field may be extremely hazardous. Furthermore, this primitive method provides only a one-time indication of movement, thereby necessitating repeated hazardous deployments in order to reset the alarm.
A number of patents utilizing the Doppler effect at various frequencies for motion detection and other applications have been issued. Each is distinguishable from the instant invention.
U.S. Pat. No. 5,585,799, Microwave Doppler Radar System for Detection and Kinematic Measurements of River Ice, to Yankielun and Ferrick, Dec. 17, 1996, incorporated herein by reference, teaches a Doppler ice motion detection system for measuring the velocity of an ice sheet. However, the device disclosed in the '799 patent is not capable of autonomous operation, and is thus not well suited to long-term monitoring of an ice sheet. Further, it employs expensive components, making it relatively less suitable for widespread use in simple detection of the dynamics of ice sheet motion. Rather, it is best used when seeking highly accurate scientific data during a relatively short-term movement of an ice sheet.
U.S. Pat. No. 6,333,691 B1, Motion Detector, to Janus, Dec. 25, 2001, employs the Doppler phenomena to detect motion by comparing phase or amplitude changes as determined from separate transmit and receive antennas. It also permits operation of the system through otherwise interfering materials via judicious selection of the frequency of operation.
U.S. Pat. No. 6,324,912 B1, Flaw Detection System Using Acoustic Doppler Effect, to Wooh, Dec. 4, 2001, employs an acoustic transducer and makes use of the Doppler effect at acoustic frequencies to detect flaws in material under inspection. A particular application is detecting flaws in railroad tracks in real time during operation of a rail riding vehicle.
U.S. Pat. No. 5,587,713, Radar Transmitter/Receivers, to Pfizenmaier, et al., Dec. 24, 1996, provides an RF transmit-receive capacity on a single PC board using a ratrace device for inputting RF energy to a mixer from the transmitter and the transmit-receive antenna.
U.S. Pat. No. 5,966,090, Differential Pulse Radar Motion Sensor, to McEwan, Oct. 12, 1999, details a pulsed Doppler system for overcoming inherent disadvantages of CW Doppler systems. It yields a constant response versus distance to motion within at least one gated range. It may also provide target direction using a quadrature receive channel.
U.S. Pat. No. 6,380,882 B1, Motion Detector Based on the Doppler Principle, to Hegnauer, Apr. 30, 2002, uses two separate RF frequencies to detect motion within a room, comparing the phase difference between these two to detect motion. The design also incorporates suppression circuitry to deal with multi-path interference.
U.S. Pat. No. 5,977,874, Relating to Motion Detection Units, to Konstandelos, Nov. 2, 1999, provides an RF transceiver on 2 separate PC boards, one for the electronics and the other for the transmit-receive antenna. The two boards are separated by a common ground plane in a preferred embodiment. The system employs the Doppler phenomenon to detect motion and is of a smaller size than previous designs.
U.S. Pat. No. 5,262,783, Motion Detector Unit, to Philpott et al., Nov. 16, 1993, is similar to the '874 patent in that it consists of two PC boards, an antenna board and the electronics board. However, the boards have no electrical connection therebetween, relying on two slots resonant at the oscillator's fundamental frequency to couple the antenna to the transceiver. Feed striplines on the boards lie orthogonal to the slots, suppressing the oscillator's 2
nd
harmonic frequency.
U.S. Pat. No. 5,497,163, Doppler Radar Module Using Micro-Stripline Technology, to Lohninger et al., Mar. 5, 1996, provides a transceiver and mixer-antenna configuration for utilizing the Doppler effect. It is mounted on a compact multi-layer motherboard, enclosed in a housing of electrically conductive material.
U.S. Pat. No. 5,684,458, Microwave Sensor with Adjustable Sampling Frequency Based on Environmental Conditions, to Calvarese, Nov. 4, 1997, provides an adjustable motion detector using the Doppler effect. For adverse environmental conditions, such as thermal noise, that exceed a pre-specified threshold, a processor incorporated in the system changes the sampling frequency.
Thus, needed is an autonomous, reliable and inexpensive detection and warning device that also eliminates exposure of personnel to environmental hazards when installing or maintaining it. Applications in nature include warning of flash floods, mudslides, tidal waves, tsunamis, land slides (falling rocks), and snow avalanches. In industry, applications include landslides in open-pit mining operations, instabilities in below ground mines, and security operations including perimeter or border monitoring and intrusion sensing.
SUMMARY
A preferred embodiment of the present invention is a compact and relatively inexpensive motion detection and alerting system implemented in a single, environmentally secure and benign package. Further it is capable of autonomous continuous operation, if necessary. It operates autonomously detecting motion within a pre-specified velocity range. In general its components include a transceiver sub-assembly and a signal processing sub-assembly.
The transceiver sub-assembly propagates electromagnetic energy as a transmitted signal in a pre-specified pattern and direction to illuminate a non-smooth surface. It receives at least some energy reflected therefrom as a reflected signal and provides a reference signal.
The signal processing sub-assembly communicates with the transceiver sub-assembly, determining the difference in frequency between a reference sample of the transmitted signal and the reflected signal. Further processing establishes the existence of a pre-specified range of Doppler frequencies that may be correlated to motion of the non-smooth surface, e.g., an ice sheet. Using a decision algorithm to identify non-transient velocities within a pre-specified velocity range enables alerting via a cellular telephone.
Components of the transceiver sub-assembly include a transceiver, a T-connector between the transceiver and an antenna, an impedan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Motion detection and alerting system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Motion detection and alerting system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Motion detection and alerting system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3202040

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.