Fishing – trapping – and vermin destroying – Traps – Insect
Reexamination Certificate
1999-05-14
2001-10-23
Rowan, Kurt (Department: 3643)
Fishing, trapping, and vermin destroying
Traps
Insect
Reexamination Certificate
active
06305122
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a mosquito killing apparatus and a mosquito trapping apparatus in which mosquitoes are attracted through the use of heat and carbon dioxide (CO2) gas indoors as well as outdoors for exterminating mosquitoes safely and effectively.
2. Description of Related Art
Mosquitoes, typical harmful flying insects, are attracted by bodily temperature of human beings and carbon dioxide discharged from respiration. They belong to an insect group of unfavorable and are most harmful as sucking blood of human beings. To exterminate those mosquitoes, various apparatus and devices such as mosquito-repellent incenses, electronic mosquito-repellent devices, electric shock mosquito killers, and so on have been proposed.
For example, “an electroshock insecticide device” disclosed in Japanese Utility Model Publication Showa No. 60-10,388 is constituted of an electroshock net to which a high voltage is applied, a fluorescent lamp for generating near ultraviolet light, a far-infrared heater for generating heat, a means for attracting insects made of a carbon dioxide (CO2) gas container or the like, a housing containing the electroshock net, the fluorescent lamp, the far-infrared heater, and the carbon dioxide (CO2) gas container and having an front opening, an insect receiving tray arranged below the housing, and a barrier net for covering the electroshock net so as not to expose the electroshock net outside. The fluorescent lamp is attached to a rear wall of the housing and emits light including spectrum having wavelength of 3,000 to 4,000 angstroms. The far-infrared heater is a far-infrared radiation body for radiating heats including spectrums having wavelength of 7 to 10 microns. The carbon dioxide (CO2) gas container is a means for generating carbon dioxide (CO2) gas intermittently where a solenoid pushes a nozzle for controlling spraying of the carbon dioxide (CO2) gas. The means for attracting insects attracts mosquitoes inside the device, and the device kills the mosquitoes by an electric shock from the electroshock net.
Moreover, “a mosquito attracting trap device” set forth in Japanese Unexamined Patent Publication Heisei No. 6-46 is constituted of a trap container in a rectangular shape placed on an installation surface, an entrance formed at a lower half on a side surface of the trap container for letting mosquitoes in, a sticky agent layer formed inside of the trap container, and an enticing means composed of a heater provided inside the trap container and a carbon dioxide (CO2) gas generating means. The heater as the enticing means for mosquitoes is made by a portable body warmer lapped with a used sock, whereas the carbon dioxide (CO2) gas generating means is a cylindrical cup filled with water to which a calcium carbonate tablet is put to produce carbon dioxide (CO2) gas, and the carbon dioxide (CO2) gas is fed inside the trap container through holes formed in a lid of the cup. The carbon dioxide (CO2) gas introduced into the trap container entices mosquitoes upon flowing out of the entrance formed on the side surface of the trap container, and the enticed mosquitoes are captured by the sticky agent layer formed on the inner surface of the trap container and die later.
However, the above conventional device raises the following problems. First, the electroshock insecticide device includes the carbon dioxide (CO2) gas generator as a structural element, and because such a generator is incorporated in the device, the device has to be larger and expensive but cannot select the carbon dioxide (CO2) gas generating means depending on purpose of use or place for installation of the device. Because the electroshock insecticide device, as well as the mosquito attracting trap device, does not have any function to stay the generated carbon dioxide (CO2) gas around the apparatus, the generated carbon dioxide (CO2) gas disperses in the air, thereby attenuating the enticing effects for mosquitoes. To keep the enticing effects for mosquitoes, the carbon dioxide (CO2) gas is continuously supplied, so that the costs for generating carbon dioxide (CO2) gas becomes very expensive. Even if the enticing means successfully attracts mosquitoes near the device, the mosquitoes may stop, e.g., at the vicinity of the device, so that there is no guarantee to kill by electroshock or trap the mosquitoes at the electroshock net or the death region on the sticky agent layer.
SUMMARY OF THE INVENTION
It is an object of the invention, for solving the above problems, to provide a novel mosquito killing apparatus and mosquito trapping apparatus which allows a carbon dioxide (CO2) gas generating means as an attracting means for mosquitoes to be selectable as a separate body depending on use, reduce the costs for generating carbon dioxide (CO2) gas, and kill or capture the attracted mosquitoes with a very high rate.
The foregoing objects are accomplished by a mosquito killing apparatus according to the invention which includes an electroshock unit to which a high voltage applies, a heater for generating heats, discharging means for discharging carbon dioxide (CO2) gas around the electroshock unit, a carbon dioxide (CO2) gas introduction inlet capable of connecting with an arbitrary carbon dioxide (CO2) gas generating means for generating carbon dioxide (CO2) gas, the carbon dioxide (CO2) gas introduction inlet being coupled to the discharging means, a protection cover arranged outside the electroshock unit for covering the electroshock unit, and a carbon dioxide (CO2) gas staying unit provided around the electroshock unit for staying the carbon dioxide (CO2) gas introduced from the carbon dioxide (CO2) gas introduction inlet around the electroshock unit.
In one form of the mosquito killing apparatus, the heater is placed inside the electroshock unit; the discharging means coupled to the carbon dioxide (CO2) gas introduction inlet supplies carbon dioxide (CO2) gas inside the electroshock unit; the carbon dioxide (CO2) gas staying unit is formed as to be upright around the electroshock unit; the carbon dioxide (CO2) gas discharged from the inside of the electroshock unit through the discharging means flows around the electroshock unit upon being heated by the heater and stays at the carbon dioxide (CO2) gas staying unit.
In another aspect of the invention, a mosquito killing apparatus includes an electroshock unit to which a high voltage is applied, a heater for generating heat, and a protection cover arranged outside the electroshock unit for covering the electroshock unit, wherein the electroshock unit, the heater, and the protection cover are placed on a ceiling in a house for animals and birds.
In yet another aspect of the invention, a mosquito killing apparatus includes a casing having one opening on an exterior side of the casing and the other opening on an interior side of the casing to render gas communication between the one opening and the other opening, the casing being adapted to be mounted on an installation aperture formed on a wall of a house, an electroshock unit, to which a high voltage applies, disposed in the casing, a heater disposed in the casing for generating heat, and a protection cover arranged inside the casing but outside the electroshock unit for covering the electroshock unit.
In a further aspect of the invention, a mosquito trapping apparatus includes a sticky body having a sticky surface to trap mosquitoes on at least an external surface of the sticky body, a heater for heating the sticky body, discharging means for discharging carbon dioxide (CO2) gas around the sticky body, a carbon dioxide (CO2) gas introduction inlet capable of connecting with an arbitrary carbon dioxide (CO2) gas generating means for generating carbon dioxide (CO2) gas, the carbon dioxide (CO2) gas introduction inlet being coupled to the discharging means, a protection cover arranged outside the sticky body for covering the sticky body, and a carbon dioxide (CO2) gas staying unit provided around the sticky body for staying the carbon dioxide (CO
Aoki Tetsuya
Inoue Yoshihiro
Iwao Kenzou
Makiya Kiyoshi
Arent Fox Kintner & Plotkin & Kahn, PLLC
Chuba Electric Power Co., Inc.
Rowan Kurt
LandOfFree
Mosquito killing apparatus and mosquito trapping apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Mosquito killing apparatus and mosquito trapping apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mosquito killing apparatus and mosquito trapping apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2582784