Surgery – Means for introducing or removing material from body for... – Infrared – visible light – ultraviolet – x-ray or electrical...
Reexamination Certificate
2001-05-17
2003-08-26
Kennedy, Sharon (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Infrared, visible light, ultraviolet, x-ray or electrical...
C600S372000
Reexamination Certificate
active
06611706
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to methods and devices for drug delivery and analyte extraction, and specifically to methods and devices for puncturing the outer layer of living skin and to methods and devices for transdermal drug delivery and analyte extraction.
BACKGROUND OF THE INVENTION
A number of different methods have been developed to perform transdermal drug delivery and/or analyte extraction, including passive diffusion of a drug or analyte between a skin patch and skin, as well as active processes such as iontophoresis, sonophoresis, electroporation, and chemically enhanced diffusion. These methods are primarily used for generating transdermal movement of small molecules, but generally do not enhance the motion of large molecules through the 10-50 micron thick outermost layer of the skin, the stratum corneum epidermidis.
In an article, “Micromachined needles for the transdermal delivery of drugs,” IEEE 11th Annual International Workshop on Micro-Electro-Mechanical Systems (1998), pp. 494-498, which is incorporated herein by reference, Henry et al. discuss a method of mechanically puncturing the skin with microneedles in order to increase the permeability of skin to a test drug. In the article, microfabrication techniques are described to etch an array of needles in silicon, and experiments performed on cadaver skin with the needle array demonstrated an increase in permeability subsequent to puncture of the skin. The needles are created with a predetermined length, and penetrate to the same depth from the skin surface, regardless of the local thickness of the stratum corneum. It is known that if the needles are longer than the local thickness, then the underlying epidermal tissue may be injured, while if the needles are too short, channel formation through the stratum corneum may be incomplete.
U.S. Pat. No. 4,775,361 to Jacques et al., U.S. Pat. No. 5,165,418 to Tankovich, and U.S. Pat. No. 5,423,803 to Tankovich et al., and PCT Publication WO 97/07734 to Eppstein et al., which are incorporated herein by reference, describe methods of using laser pulses to locally heat the stratum corneum to about 120° C., thereby causing local ablation, in order to cause a single hole to develop in the stratum corneum through which large molecules may pass. Whereas some selectivity of ablation depth can be attained by varying the wavelength of the laser pulse, no feedback mechanism is disclosed whereby the laser pulses are terminated upon generation of the necessary damage to the stratum corneum.
PCT Publication WO 97/07734 also discloses thermal ablation of the stratum corneum using an electrically resistive element in contact with the stratum corneum, such that a high current through the element causes a general heating of tissue in its vicinity, most particularly the stratum corneum. As above, no means are disclosed to terminate current flow upon sufficient disruption of the stratum corneum. Additionally, thermal characteristics of skin vary highly across different areas of an individual's skin, as well as among a group of subjects, making optimal thermal dosages, which produce the desired ablation without causing pain, very difficult to determine.
Electroporation is also well known in the art as a method to increase pore size by application of an electric field. This process is described in an article by Chizmadzhev et al., entitled “Electrical properties of skin at moderate voltages,”
Biophysics Journal
, February, 1998 , 74(2), pp. 843-856, which is incorporated herein by reference. Electroporation is disclosed as a means for transiently decreasing the electrical resistance of the stratum corneum and increasing the transdermal flux of small molecules by applying an electric field to increase the size of existing pores. Electroporation generally does not produce pores of sufficient diameter to pass large molecules therethrough. Additionally, optimal voltage profiles are difficult to determine because of naturally occurring variations as described hereinabove, as well as the lack of an accurate feedback mechanism to indicate achievement of the desired pore enlargement. If excessive voltage is applied, an irreversible breakdown occurs, resulting in damage to the skin and possible sensations of pain.
U.S. Pat. No. 5,019,034 to Weaver et al., which is incorporated herein by reference, describes apparatus for applying high voltage, short duration electrical pulses on the skin to produce electroporation, and states that “ . . . reversible electrical breakdown . . . along with an enhanced tissue permeability, is the characteristic effect of electroporation.”
U.S. Pat. Nos. 5,885,211, 6,022,316, 6,142,939 and 6,173,202 to Eppstein et al., which are incorporated herein by reference, describe methods for forming micropores in the stratum corneum by heating tissue-bound water above the vapor point with a heat conducting element, so as to enhance transdermal transport of an analyte or active substance. Further enhancement techniques include the use of sonic energy, pressure, and chemical enhancers.
U.S. Pat. No. 3,964,482 to Gerstel, U.S. Pat. No. 6,050,988 to Zuck, and U.S. Pat. No. 6,083,196 to Trautman et al., which are incorporated herein by reference, describe other apparatus and methods for facilitating transdermal movement of a substance.
U.S. Pat. No. 6,148,232 to Avrahami, which is incorporated herein by reference, describes apparatus for applying electrodes at respective points on skin of a subject and applying electrical energy between two or more of the electrodes to cause resistive heating and subsequent ablation of the stratum corneum primarily in an area intermediate the respective points. Various techniques for limiting ablation to the stratum corneum are described, including spacing of the electrodes and monitoring the electrical resistance of skin between adjacent electrodes.
Electrosurgery is commonly used during surgical procedures today, particularly in endoscopic and laparoscopic surgery where direct access to the tissue being dissected is limited. Electrosurgery involves applying radio frequency electric current to electrodes which are used to sever tissue or achieve homeostasis. A publication entitled “Instruction Manual for the Force 2 Electrosurgical Generator” (Valleylab/Tyco Healthcare Group LP, Boulder, Colo.), which is incorporated herein by reference, describes the modes of operation of electrosurgical devices.
Three surgical effects can be achieved with electrosurgery. At relatively low power settings, current passing through tissue causes heating of the tissue due to the high frequency and the electrical resistance thereof. As the tissue is heated, water within the tissue is driven out, leading to desiccation of the tissue. At higher power levels, the water in the tissue may vaporize before it leaves the cells, causing the cells to explode. Moving the electrode into contact with new tissue causes new cells to explode, and results in electrosurgical cutting. Alternatively, small sparks may jump across gaps, causing cells to explode or ablate. Due to the extreme concentration of current, the cutting is particularly efficient with short sparks.
Applying electrical power intermittently, having higher peak voltages but the same average power as is used in electrosurgical cutting, allows for desiccation of the tissue near the electrode without bursting the cells. As water leaves the cells, the resistance of the cells increases until the resistance of the tissue is greater than that of the medium surrounding the tissue and electrode. If the peak voltage is high enough, a long spark may occur between the electrode and surrounding tissue (where minimal desiccation has occurred). The spark causes charring and cauterization of the tissue, the degree of which is determined by the length of time sparks have impinged the tissue.
U.S. Pat. No. 6,159,194 to Eggers et al., which is incorporated herein by reference, describes electrosurgical apparatus and methods for inducing tissue contraction, without ablation or dissociation of surro
Avrahami Zohar
Sohn Ze'ev
Abelman ,Frayne & Schwab
Kennedy Sharon
Transpharma Ltd.
LandOfFree
Monopolar and bipolar current application for transdermal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Monopolar and bipolar current application for transdermal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monopolar and bipolar current application for transdermal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3098835