Monolithically integrated mode-locked vertical cavity...

Coherent light generators – Particular resonant cavity – Distributed feedback

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S092000

Reexamination Certificate

active

06628695

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to vertical cavity surface emitting lasers (VCSELs), and in particular to a monolithically integrated VCSEL whose resonator cavity is designed for mode-locking.
BACKGROUND OF THE INVENTION
The vertical cavity surface emitting laser (VCSEL) is a well-known type of semiconductor laser. Its advantages include compactness, single axial mode emission, high quality circular beam shape, ease of mass production, and simple testability. Most VCSELs have a short resonator cavity, which limits their longitudinal or axial lasing modes to one.
Mode-locking is a known method capable of delivering short and high power pulses of radiation. Lasers with sufficiently long resonator cavities to support a significant number of axial lasing modes take advantage of mode-locking to produce a superposition of the axial modes yielding ultrashort pulses with very high peak powers. For more information on the theory of mode-locking and fundamental mode-locking techniques the reader is referred to Orazio Svelto, Principles of Lasers, translated by David C. Hanna, 4
th
edition, Plenum, pp. 330-364. A number of mode-locking techniques rely on a shutter or saturable absorber to mode-lock a number of the axial modes supported by the resonator cavity. Specifically, passive mode-locking takes advantage of the high peak power of the pulses as criteria for the saturable absorber to force the laser to run in mode-locked condition.
Because mode-locking is capable of generating a train of ultrashort pulses with high peak powers and low jitter it has many applications in a variety of fields. Short optical pulses have a large spectral bandwidth and can be used to generate multiple wavelength channels for telecommunication systems such as wavelength-division-multiplexed (WDM) and dense WDM (DWDM) optical communications networks. A high pulse repetition rate can also be utilized as a source for optical time-division-multiplexed (TDM) signals or for timing control signals in sampling applications. High repetition rate and low jitter mode-locked pulses can also be used for clock distribution in electronic systems.
It has been recognized that combining the advantages of VCSEL lasers with mode-locking would be of great benefit. In fact, the prior art teaches various structures and methods for using VCSELs in an external cavity mode-locking arrangement. For example, Jiang W., et al., “Femtosecond Periodic Gain Vertical-Cavity Lasers”, IEEE Photonics Technology Letters, Vol. 5, No. 1, January 1993, pp. 23-25 discloses an external cavity actively mode-locked VCSEL. This device is optically pumped by a mode-locked Ti:Sapphire laser. Jiang W., et al., “Electrically pumped mode-locked vertical-cavity semiconductor laser”, Optics Letters, Vol. 18, No. 22, November 1993, pp. 1937-1939 also teach an externally mode-locked VCSEL which is electrically rather than optically pumped. Hoogland S., et al., “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser”, IEEE Photonics Technology Letters, Vol. 12, No. 9, September 2000, pp. 1135-1137 also teach an optically pumped VCSEL which is mode-locked using a saturable absorber mirror forming a part of an external cavity. For further examples the reader is referred to Dowd P., et al., “Mode-Locking of an InGaAs VCSEL in an External Cavity”, LEOS 1995, IEEE, 8
Th
Annual Meeting Conference Proceedings, Vol. 2, pp. 139-140; Haring, R., et al., “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Lasers”, CLEO 2000, Technical Digest (IEEE Cat. No. 00CH37088), pp. 97-98.
The disadvantages of using VCSELs in external cavity arrangements include large size, alignment problems and poor scalability. In fact external mode-locking is incompatible with one of the major advantages of VCSELs, namely the ability to manufacture them in dense arrays or integrate them into optoelectronic chips. Therefore, VCSELs that are mode-locked with an external cavity cannot be used in most of the desired applications that stand to gain the most from short, stable and high power pulses.
In accordance with another approach, it has also been proposed to lengthen the VCSEL structure and filter transverse modes that tend to naturally arise in long resonator cavities. This approach is discussed, e.g., by Nikolajeff F., et al., “Spatial-mode control of vertical-cavity lasers with micromirrors fabricated and replicated in semiconductor materials”, Applied Optics, Vol. 38, No. 14, May 1999, pp. 3030-3038. This reference teaches the fabrication of micromirrors on substrates to spatially filter transverse modes in the far field for external cavity lasers and suggests ways of implementing the idea on monolithic cavities.
U.S. Pat. No. 5,574,738 to Morgan teaches yet another approach to derive high frequency pulses from a VCSEL. Specifically, Morgan teaches a GHz-range frequency-modulated laser using a VCSEL with a saturable absorber contained within the VCSEL's distributed Bragg reflector to self-pulsate the VCSEL in the GHz regime. The repetition frequency is modulated with current, saturable absorber biasing or cavity design. The principles of self-pulsation are similar to those of Q-switching or spiking in which a build-up of population inversion while saturable absorber losses are high causes a high power laser pulse to develop when the saturable absorber losses drop. Thus, the self-pulsation technique taught by Morgan is implemented with a single axial mode in a short VCSEL.
In contrast with the phenomenon of self-pulsation used by Morgan, mode-locking requires a large number of axial modes to be supported by the VCSEL. In mode-locking the function of the saturable absorber is to absorb slow and low power components of the superposition produced the randomly phased axial modes. Meanwhile, fast and high power components of the superposition will saturate the absorber and pass through it. Thus, during mode-locking the saturable absorber induces the laser to yield high power mode-locked pulses.
The operation of the absorber in mode-locking is also in stark contrast with its operation in Q-switching, where it is used to prevent lasing in all modes while a population inversion is being build up. A drop in the absorption of the absorber upon saturation causes the laser to produce a pulse also referred to as giant pulse. The giant pulse is not a result of any particular superposition of axial modes. A Q-switched laser with a saturable absorber has build up times, as well as rise and fall times that depend on the cavity design and never reach mode-locking. In Q-switching the laser is not continuously on; lasing action is being turned on and off. In a mode-locked laser, on the other hand, all the modes are lasing continuously. It should also be noted that the repetition rates in mode-locking are determined by the cavity length while in Q-switching is determined by how fast can inversion be reached.
In fact, none of the prior art teachings can be used to devise a monolithically integrated mode-locked VCSEL, i.e., a VCSEL that is integrated in one device and does not require the use of an external cavity for mode-locking operation. That is because simply increasing the cavity size of a conventional VCSEL introduces significant problems related to resonator stability and dispersion. An additional problem relates to the bulk associated with the addition of mode-locking components, and associated loss of compactness. Therefore, it would be a major advance in the art of semiconductor lasers to provide a new type of VCSEL that combines the compactness and ease of mass production of conventional VCSELs with the advantageous properties of mode-locked lasers.
OBJECTS AND ADVANTAGES
In view of the above shortcomings of the prior art, it is a primary object of the invention to provide a monolithically integrated VCSEL that can be mode-locked to deliver high frequency and high power ultrafast pulses. In particular, it is the object of the invention to ensure resonator stability in VCSELs with extended cavities and to compensate for dispersion to th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monolithically integrated mode-locked vertical cavity... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monolithically integrated mode-locked vertical cavity..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monolithically integrated mode-locked vertical cavity... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3083333

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.