Monolithic ink jet nozzle formed from an oxide and nitride...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S063000

Reexamination Certificate

active

06270192

ABSTRACT:

FIELD OF INVENTION
This invention relates generally to an ink jet print nozzle. In particular, it relates to an ink jet print nozzle in which inner walls of the ink jet print nozzle are formed from an oxide-nitride or oxide-carbide composition.
BACKGROUND
Ink jet printing mechanisms use pens that shoot droplets of ink onto a printable surface to generate an image. Ink jet printing mechanisms may be used in a wide variety of applications, including computer printers, plotters, copiers, and facsimile machines. For convenience, the concepts of the invention are discussed in the context of a printer.
An ink jet printer typically includes a print head having a multitude of independently addressable firing units. Each firing unit includes an ink chamber connected to a common ink source, and to an ink jet print nozzle. A transducer within each ink chamber provides the impetus for expelling ink droplets through the associated ink jet print nozzle. Typically, the transducer is a firing resistor which heats the ink until the ink droplets are expelled through the ink jet print nozzle.
Generally, a substrate supports the firing resistors. An orifice layer which includes the ink jet nozzles is attached to the substrate so that each ink jet nozzle corresponds with an associated firing resistor and forms an ink chamber.
To obtain a high resolution printed output, it is desirable to maximize the density of the firing units, requiring miniaturization of the print head components. The substrate that supports the firing resistors and the orifice layer that provides the ink jet nozzle above each resistor are subject to small dimensional variations that can accumulate and limit miniaturization.
Monolithic print heads have been developed through print head manufacturing processes which use photo imaging techniques similar to those used in semiconductor manufacturing. The components are constructed on a flat wafer by selectively adding and subtracting layers of various materials. Using photo-imaging techniques, dimensional variations are limited. Further variations do not accumulate because each layer is registered to an original reference on the wafer.
Existing monolithic print heads are complex to manufacture. Further, the ink jet nozzles are formed from either a polymer or metal material. Polymer and metal materials offer limited performance because the surfaces of these materials can be rough, and because these materials react corrosively with the ink. It is important that the surface of the ink jet nozzle be smooth so as to not interrupt the flow of ink through the ink jet nozzles. Further, corrosive reactions to the ink cause the ink jet nozzles to break down and deteriorate.
It is desirable to have an ink jet nozzle in which the surface of the ink jet nozzle is formed from a material which is smoother than presently existing materials. Further, the material would not react to ink which flows through the ink jet nozzle thereby increasing the useful life of the ink jet nozzle.
SUMMARY OF THE INVENTION
The present invention provides a monolithic ink jet nozzle which is formed from an oxide-nitride or oxide carbide composition. These compositions provide an ink jet nozzle which includes a smoother re-entrance surface than presently existing ink jet nozzles. Further, the compositions do not corrosively react to ink passing through the ink jet nozzle. Therefore, the ink jet nozzle is useful for a longer period of time than presently existing ink jet nozzles.
A first embodiment of the invention includes an ink jet nozzle. The ink jet nozzle includes a substrate having an upper surface in which an ink energizing element is attached to the upper surface of the substrate. The ink jet nozzle further includes an oxide-nitride or oxide-carbide composite orifice layer. The composite orifice layer includes a lower surface conformally connected to the upper surface of the substrate, and an exterior surface facing away from the substrate. The composite orifice layer defines a firing chamber. The firing chamber opens through a nozzle aperture in the exterior surface, and extends downward with a negative slope through the composite orifice layer to expose the ink energizing element.
Another embodiment of the invention includes a method of forming an ink jet nozzle over an ink energizing element on an upper surface of a substrate. The method includes the following steps. First, a positive sloped sacrificial oxide bump is created on the surface. Next, a nitride or carbide composite layer and an oxide layer are deposited over the surface and the sacrificial bump. The oxide and composite layers are polished forming an orfice layer. An opening in the orifice layer is created over the sacrificial oxide bump. Finally, the sacrificial oxide bump is removed yielding an ink jet nozzle.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.


REFERENCES:
patent: 359176054 (1984-10-01), None
patent: 363297050 (1988-12-01), None
patent: 363297051 (1988-12-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monolithic ink jet nozzle formed from an oxide and nitride... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monolithic ink jet nozzle formed from an oxide and nitride..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monolithic ink jet nozzle formed from an oxide and nitride... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2517819

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.