Monolithic infrared spectrometer apparatus and methods

Radiant energy – Invisible radiant energy responsive electric signalling – Infrared responsive

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S031000

Reexamination Certificate

active

06303934

ABSTRACT:

BACKGROUND
Conventional Ebert and Czerny-Turner type spectrometers and spectrographs are known in the art and have been common optical instruments for most of this century. These instruments use free-space optical elements—mirrors, reflective gratings, and slits—to disperse incident light into component wavelengths. Recently, there has been some experimental work using waveguides made of plastic or silicon dioxide, rather than air, to transmit the light from one optical element to the next.
Most infrared spectrometers and spectrographs of the prior art use cooled infrared detectors as well as separately-aligned optical elements. Cooling the detectors requires added bulk and heavy equipment, such as closed cycle refrigerators, cryogenic liquid, and thermoelectric coolers with large power supplies. Maintaining optical alignment is also a challenge if the instrument is to be subjected to environmental stresses.
Infrared spectroscopy for chemical analysis has typically used laboratory grade spectrometers, spectrographs, or Fourier Transform Infrared (FTIR) instruments. These instruments can be as small as a cigar box and as large as a table top. They generally consist of entrance and exit slits, reflective mirrors and a reflective diffraction grating made of glass which may or may not be rotated to scan the wavelengths of interest. The FTIR, for example, generally uses a Michelson interferometer with a moving mirror in one interferometer leg and a fixed wavelength reference such as a laser to scan the wavelengths. In addition there is a host of external equipment, including power supplies, scan motors and associated control electronics, and of course a cooled infrared detector. For example, an infrared chemical analysis instrument developed by Foster-Miller uses an FTIR about the size of a breadbox with a liquid nitrogen-cooled mercury cadmium telluride (HgCdTe) detector.
There are a few spectrometers, in the prior art, that attempt to remedy the above-described problems of size, weight, complexity and power consumption. Zeiss manufactures a Monolithic Miniature-Spectrometer, or MMS 1, and distributes the MMS 1 through Hellma International, Inc., of Forest Hills, N.Y. The MMS 1 uses a conventional silicon photodiode array and a cylinder of glass with an integral imaging grating. However, its operation is limited by the photodiode and the spectral limitations of the glass relative to ultraviolet (UV) and visible wavelengths. The detector is also positioned away from the waveguide, presenting certain optical alignment difficulties, particularly under environmental stresses.
Another instrument has been demonstrated by researchers at Kernforschungszentrum Karlsruhe GmbH (U.S. representative American Laubscher Corp., Farmingdale, N.Y.). It uses a waveguide and grating fabricated in a multi-layer photoresist of polymethyl methacrylate (PMMA) to couple the output of an optical fiber to a linear detector array or array of fibers. This instrument is designed for demultiplexing applications. As above, because of the choice of materials, operation of this device is limited to visible and near-IR wavelengths of 600 nm to 1300 nm. Specifically, fabrication of the waveguide and grating is done by a process called LIGA (which stands for the German words for Lithography, Galvanoformung and Abformung) which uses a three-layer photoresist and deep-etch X-ray lithography.
Yet another instrument has been developed by researchers at Oak Ridge National Laboratory. It is a microspectrometer based on a modified Czerny-Turner configuration and machined from a block of PMMA also known as Acrylic™ material or Plexiglas™ material. It has a bandwidth of about 1 &mgr;m centered at 980 nm and uses an externally mounted linear photodiode array.
None of these prior art spectrometers permit fully monolithic operation and spectral sensitivity from 1.1 &mgr;m-12 &mgr;m, or further, and with uncooled detectors.
It is, accordingly, an object of the invention to provide apparatus that solves or reduces the above-described problems in the prior art.
Another object of the invention is to provide a hand-held, monolithic, rugged IR spectrometer.
A further object of the invention is to provide methods of manufacturing uncooled IR spectrographs.
Yet another object of the invention is to provide a process of isolating chemical species over a large infrared band with a monolithically-constructed IR spectrometer.
These and other objects will become apparent in the description which follows.
SUMMARY OF THE INVENTION
The spectrograph of the invention overcomes many of the problems in the prior art by using uncooled detectors, e.g., microbolometers, which eliminate the need for associated cooling equipment. Other detectors such as PbSe or PbS are also suitable. In addition, the spectrograph of the invention is monolithically constructed with a single piece of silicon, which eliminates the need for alignment and which makes the device inherently rugged and light weight. The use of standard silicon microelectronics technology also makes the invention low-cost, as compared to the prior art. By way of example, these costs can be orders of magnitude lower than the conventional spectrographs, i.e., hundreds of dollars instead of tens of thousands of dollars.
In one aspect, the invention includes a solid optical grade waveguide (similar to a slab of glass) coupled to a line array of detectors. Light from a source (e.g., earth emissions transmitted through gases) is focussed at a first surface of the waveguide, reflected from an internal mirror to a diffractive surface, which diffracts the light to a second reflector which focusses the light onto the array at a second surface of the waveguide. Accordingly, because of refraction, an f/1 light bundle entering the waveguide is translated to about an f/2 bundle within the waveguide, making it easier to cope with wavefronts therein.
In one aspect, the waveguide is silicon to transmit IR light; and the detector array is one of microbolometers, PbSe, PbS, or other IR sensitive detectors.
In another aspect, the waveguide is transmissive to visible light and the detectors are CCD elements.
In yet another aspect, the waveguide is ZnSe and the detectors are “dual band” so that visible and IR light energy are simultaneously captured at the detectors. For example, each pixel of the dual band detector can include a microbolometer and a CCD element.
The invention has several advantages over the prior art. First, it monolithically integrates all parts of the spectrometer, including the detector, thereby making the instrument compact, rugged and alignment-free. Further, by fabricating the entire device on one piece of silicon, using silicon micromachining technology, we take advantage of the thirty years of silicon process development, and the emergence of silicon as a commodity item, to enable the fabrication of the instrument at a very low cost.
Other capabilities, features and advantages of a spectrometer constructed according to the invention include: (a) the ability to sense and identify chemicals in a variety of applications and environments, (b) the ability to determine chemical concentrations, (c) operation with low-cost, low power, and long-term unattended operation or calibration, (d) uncooled operation, without expensive and unwieldy cooled detector elements, and (e) a rugged, alignment-free instrument.
The invention is next described further in connection with preferred embodiments, and it will become apparent that various additions, subtractions, and modifications can be made by those skilled in the art without departing from the scope of the invention.


REFERENCES:
patent: 4274706 (1981-06-01), Tangonan
patent: 4673241 (1987-06-01), Nishiwaki et al.
patent: 5082629 (1992-01-01), Burgess, Jr. et al.
patent: 5185829 (1993-02-01), Yamada et al.
patent: 5206920 (1993-04-01), Cremer et al.
patent: 5343542 (1994-08-01), Kash et al.
patent: 5550373 (1996-08-01), Cole et al.
patent: 5581639 (1996-12-01), Davies et al.
patent: 5615008 (1997-03-01), Stachelek
patent: 5734165 (1998-03-01), Unal et al

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monolithic infrared spectrometer apparatus and methods does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monolithic infrared spectrometer apparatus and methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monolithic infrared spectrometer apparatus and methods will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2599295

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.