Monolithic expanded beam mode electroabsorption modulator

Optical waveguides – Temporal optical modulation within an optical waveguide – Electro-optic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S020000, C359S344000

Reexamination Certificate

active

06804421

ABSTRACT:

This invention relates to semiconductor optical devices with quantum well structures. More particularly this invention relates to the monolithic integration of transparent optical mode transformers with an electroabsorption modulator.
BACKGROUND OF THE INVENTION
A typical electroabsorption (EA) modulator is composed of a semiconductor device, which has light coupled into and out of it by two optical fibers. The optimum optical beam profile for efficient modulation is not the same as the optimum optical beam profile for efficient fiber coupling. This is especially true in high speed EA modulators.
If efficient optical coupling into and out of the EA modulator is not achieved, then system performance is degraded owing to excessive optical losses. Likewise, if efficient modulation is not achieved within the EA modulator, then system performance may be degraded owing to poor signal quality. For optimum modulator performance, it is desirable to independently optimize the optical beam profile in the modulation region of the semiconductor device and at the fiber input and output coupling surfaces of the device.
One possible solution is the inclusion of mode expansion/contraction regions, which couple the optical signal into and out of the optical fibers with one optical beam profile, or mode, and couple the optical signal into and out of the modulation region of the semiconductor device with another beam mode.
There have been numerous attempts to independently optimize these sections. One technique, described by Johnson, et. al. (U.S. Pat. No. 6,162,655), uses a beam expansion technique, wherein the transfer of the optical mode from the modulation region to an underlying passive waveguide is through a bumped mode transfer section. The modulation region uses quantum wells optimized for modulation properties of a preselected beam. The underlying waveguide is optimized for beam expansion properties to allow optimum optical modes for both external fiber coupling and modulation.
Some loss at the input and output couplings may be unavoidable, but any optical loss within an EA modulator is highly undesirable. To avoid high optical transition loss between the waveguide and the modulation region, the thicknesses of all the layers in the transition region are desirably carefully controlled. This technique requires a large number of precise fabrication steps.
Another technique for independently optimizing the modulator region from the beam expander region was suggested by Ido, et. al. (U.S. Pat. No. 5,742,423). The application of a “butt-joint” technique is used to achieve independently optimized regions on the modulator. In this technique, the modulation region is defined through etching and the mode expander is selectively grown. The mode transfers directly through the butt joint region between the modulation and mode expander regions. This technique has the advantage of the mode not being transferred vertically within the structure. The optical losses can be kept reasonably low, except for the potential of an abrupt interface with slightly different modal indices at the butt joint. This may cause a reflective loss if the interface is not truly adiabatic. This technique uses regrowth of epitaxial material on an etched structure. Epitaxial growth on etched surfaces can reduce yield due to possible non-uniform growth problems. Also, it can prove difficult to obtain proper mode matching between regions, which may lead to undesirable reflections or scattering.
Arakawa, et. al. (U.S. Pat. No. 5,757,833) disclose a selective area growth method to produce quantum well lasers. An integrated infrared laser and output waveguide, fabricated by this method is disclosed. The output waveguide is both transparent and, through selective area growth, is shaped so as to increase the optical mode size for better mode coupling of the laser output to an optical fiber. Selective area growth techniques limit the absolute amount of enhancement which can be achieved and the degree of transparency attainable in the mode expansion section, while retaining the quality and reliability of the device.
Lasers, such as those disclosed by Arakawa et al., must be concerned with saturable absorber effects, which may lead to non-linearity in the optical output power. For this and other reasons this technique has not widely used in laser devices. The technique of selective area growth of quantum wells is however widely deployed to monolithically integrate lasers with modulators where only a slight enhancement is necessary and the quality can be retained.
In addition, lasers require reflective elements for their operation. Arakawa et al. disclose using the cleaved surfaces of the selective growth areas as reflectors.
SUMMARY OF THE INVENTION
One embodiment of the present innovation is a monolithic single pass expanded beam mode active optical device for light of a predetermined wavelength and a predetermined beam mode. An exemplary a monolithic single pass expanded beam mode active optical device includes: a substrate; a waveguide layer coupled to the top surface of the substrate; a semiconductor layer coupled to the waveguide layer; first and second electrodes for receiving an electric signal coupled to the substrate and the semiconductor layer, respectively.
The waveguide layer includes a plurality of sublayers, forming a quantum well structure, which is responsive to the electric signal. The waveguide layer has three sections, two expansion/contraction sections and an active section, which extends between and adjacent to the two expansion/contraction sections. At least one of the plurality of sublayers varies in thickness within the expansion/contraction portions of the quantum well structure. The active portion of the quantum well structure interacts with light of the predetermined wavelength, responsive to the electric signal. Possible interactions of the active region with the light include: absorption in the case of an EA modulator or optical gain in the case of an SOA.
A further embodiment of the present innovation is a monolithic expanded beam mode EA modulator for modulating light of a predetermined wavelength, responsive to an electric signal. An exemplary monolithic expanded beam mode EA modulator includes: a substrate; a waveguide layer coupled to the substrate; a semiconductor layer coupled to the waveguide layer; and first and second electrodes for receiving the electric signal coupled to the substrate and semiconductor layer, respectively.
The waveguide layer includes a plurality of sublayers, which form a quantum well structure. This quantum well structure includes two expansion/contraction sections and an electroabsorption section. The thickness of at least one of the plurality of sublayers varies within the expansion/contraction sections. Also the expansion/contraction sections have a cutoff wavelength which is shorter than the predetermined wavelength. The electroabsorption section extends between, and adjacent to the two expansion/contraction sections. The cutoff wavelength of electroabsorption section has a first value, which is shorter than the predetermined wavelength, responsive to the on-voltage of the electric signal, and has a second value, which is longer than the predetermined wavelength, responsive to the off-voltage of the electric signal.
Another embodiment of the present invention is method of manufacturing a monolithic expanded beam mode electroabsorption modulator of the first embodiment. The first step of this method is to form the waveguide layer on a portion of the top surface of the substrate by selective area growth. The waveguide layer having: a waveguide index of refraction; an electroabsorption thickness in an electroabsorption portion of the waveguide layer that is greater than the thicknesses in remaining portions of the waveguide layer along the longitudinal axis; and a plurality of sublayers forming a quantum well structure, each of the sublayers including a waveguide material. Next, the semiconductor layer, having a semiconductor layer index of refraction, is formed on the waveguid

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monolithic expanded beam mode electroabsorption modulator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monolithic expanded beam mode electroabsorption modulator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monolithic expanded beam mode electroabsorption modulator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3332374

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.