Monolithic ceramic capacitor and method of producing the same

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S089160, C264S615000

Reexamination Certificate

active

06416603

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a monolithic ceramic capacitor and a method of producing it. More particularly, the present invention relates to a monolithic ceramic capacitor having dielectric ceramic layers each made of a ceramic material comprising strontium titanate as the main component and bismuth oxide or an oxide of a bismuth compound as an additional component and containing a reduction inhibitor, and also to a method of producing it.
2. Description of Related Art
A monolithic ceramic capacitor is generally composed of a plurality of dielectric ceramic layers with inner electrodes sandwiched between the adjacent ceramic layers and with outer electrodes disposed on the outer surface of the laminate and connected with each inner electrode.
Such a monolithic ceramic capacitor may be produced according to the following process. A dielectric powder is mixed with an organic binder; the resulting mixture is made into a slurry; the slurry is shaped into green sheets by a doctor-blading method; the sheets each are printed with a paste containing a metal powder by a screen-printing method or the like; a plurality of the green sheets each printed with the paste are laminated; the resulting laminate is subjected to pressure to establish tight connections between the green sheets; the laminate is then fired in air at from about 1300 to 1400° C.; an outer electrode material is applied onto the surfaces of the sintered body having exposed inner electrodes; and the material is baked.
Dielectric ceramic layers consisting essentially of strontium titanate and containing a bismuth compound give the monolithic ceramic capacitor a relatively large dielectric constant with small voltage dependence and a small dielectric loss and therefore high resistance to high voltage.
A material of the inner electrodes comprising a noble metal such as platinum, gold, palladium or their alloys is advantageous in that (1) the inner electrode material does not react with the dielectric ceramic during firing since the noble metal has a melting point higher than the temperature at which the dielectric ceramic is fired and that (2) the inner electrode material is not oxidized even when fired in air. However, an electrode material comprising such a noble metal is expensive. For example, the cost of the electrode material may often be from 30 to 70% of the total material cost of the ceramic capacitor.
Moreover, an inner electrode material comprising a silver-palladium alloy often worsens the characteristics of the capacitor. For example, the dielectric constant of the capacitor is often lowered and becomes unstable due to the migration of silver.
In order to solve these problems, base metals such as nickel, copper, iron, cobalt, tungsten, molybdenum, etc. could be used as the inner electrode material. However, the material comprising such a base metal must be fired in a neutral or reducing atmosphere in order to prevent the oxidation of the material during firing. If fired in such conditions, the bismuth compound in the dielectric ceramic layers is reduced and, as a result, the dielectric ceramic becomes semi-conductive. Accordingly, a ceramic capacitor would not be produced.
Copper can be fired at about 1000° C. in a neutral atmosphere having an oxygen partial pressure of 10
−7
MPa but it is easily oxidized at relatively low temperatures. An inner electrode material comprising copper also diffuses copper into the dielectric ceramic layers during firing at an oxygen partial pressure that is higher than the equilibrated oxygen partial pressure of Cu/CuO and often lowers the characteristics of the capacitor produced. Therefore, an inner electrode material comprising copper requires the strict control of the oxygen partial pressure in the firing atmosphere, which, however, results in the increase in the production cost.
SUMMARY OF THE INVENTION
The present invention provides a monolithic ceramic capacitor which comprises a dielectric ceramic material consisting of strontium titanate as the main component and bismuth oxide or an oxide of a bismuth compound as an additional component and an inner electrode material of a base metal and which therefore has a large dielectric constant with small voltage dependence and a small dielectric loss and has high resistance to high voltage.
Specifically, as the first aspect of the present invention, there is provided a monolithic ceramic capacitor which is composed of dielectric ceramic layers made of a ceramic material comprising strontium titanate as the main component and bismuth oxide or an oxide of a bismuth compound as an additional component and containing a reduction inhibitor, and inner electrodes made of a base metal material containing nickel or a nickel alloy.
As one preferred embodiment of the first aspect of the invention, the reduction inhibitor in the ceramic material is represented by a general formula:
a
MO
+b
MnO
2
+c
B
2
O
3
+(100
−a−b−c
)SiO
2
wherein M is at least one of Mg, Sr, Ca and Ba; and a, b and c are 10≦a≦60, 5≦b≦20 and 20≦c≦35 in mol percent.
As another preferred embodiment, the reduction inhibitor is from about 4 to 25% by weight relative to the ceramic material containing it.
The present invention also provides as its second aspect a method for producing a monolithic ceramic capacitor, which comprises the steps of preparing dielectric ceramic green sheets and laminating an electrode material on each green sheet to form a laminate comprising the ceramic green sheets each with the electrode material, followed by heating the resulting laminate at a rate to realize an increase in the temperature of the laminate of from about 10 to 17° C./min, firing it at a predetermined temperature and thereafter cooling it.
As one preferred embodiment of the second aspect of the invention, the laminate is cooled at a rate of about 10° C./min or more in the last cooling step.
As another preferred embodiment, the ceramic green sheets prepared comprise strontium titanate as a main component and bismuth oxide or an oxide of a bismuth compound as a minor component and contain a reduction inhibitor as an additive.
As still another preferred embodiment, the electrode material laminated to be on each ceramic green sheet comprises a base metal material containing nickel or a nickel alloy.
As still another preferred embodiment, the reduction inhibitor in each ceramic green sheet is represented by a general formula:
a
MO
+b
MnO
2
+c
B
2
O
3
+(100
−a−b−c
)SiO
2
wherein M is at least one of Mg, Sr, Ca and Ba; and a, b and c are 10≦a≦60, 5≦b≦20 and 20≦c≦35 in % by mol.
DETAILED DESCRIPTION OF THE INVENTION
The preferred reduction inhibitor is of the general formula:
a
MO
+b
MnO
2
+c
B
2
O
3
+(100
−a−b−c
)SiO
2
wherein M is at least one of Mg, Sr, Ca and Ba; and a, b and c each are % by mol. It contains a reduction inhibitor MO. If MO is less than about 10 mol % of the reduction inhibitor, the insulating resistance of the ceramic capacitor is lowered and the dielectric loss thereof is increased. If it is more than about 60 mol %, the insulating resistance of the ceramic capacitor is also lowered. Therefore, the mol % (a) of MO in the reduction inhibitor preferably satisfies 10≦a≦60 and most preferably 35≦a≦55.
Also, MnO
2
functions as a reduction inhibitor. If b is less than about 5 mol %, the dielectric ceramic becomes semi-conductive. If it is more than about 20 mol %, the insulating resistance of the ceramic capacitor is lowered. Therefore, it is desirable that 5≦b≦20 and most preferably 10≦b≦15.
B
2
O
3
functions as a glass former. If c is less than about 20 mol %, the green sheets cannot be sintered sufficiently. Therefore, the dielectric loss of the ceramic capacitor is increased and the insulating resistance thereof is lowered. If c is more than about 35 mol %, the dielectric constant of the ceramic capacitor is lowered. Therefore, it is desirable that

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monolithic ceramic capacitor and method of producing the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monolithic ceramic capacitor and method of producing the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monolithic ceramic capacitor and method of producing the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2861226

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.