Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Eye prosthesis – Intraocular lens
Reexamination Certificate
2001-05-15
2003-10-28
McDermott, Corrine (Department: 3738)
Prosthesis (i.e., artificial body members), parts thereof, or ai
Eye prosthesis
Intraocular lens
C623S006280
Reexamination Certificate
active
06638305
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is related to intraocular lenses (IOLs). More particularly, the invention relates to such lenses which provide substantial advantages of both monofocal IOLs and multifocal IOLs.
Currently produced or conventional monofocal IOLs provide excellent optical quality for distance vision. Thus, such monofocal IOLs are produce with a single vision correction power, that being a vision correction power for distance or distance vision. However, such conventional monofocal IOLs do not provide sufficient near vision correction for reading or other situations where near vision is required.
One approach to providing near vision correction is currently in commercial use and is known generically as “multifocal IOLs”. Such multifocal IOLs are produced with a plurality of optical powers, for example, a distance vision correction power and a near vision correction power. Although such lenses have proven to be quite effective in providing the desired range of vision correction power, they may not be totally acceptable to some patients due to the simultaneous vision characteristics of such lenses which may produce halo/glare phenomena.
An additional approach to providing the patient with a range of vision correction powers has been suggested and is commonly known as an “accommodating IOL”. This type of IOL is designed to specifically provide both distance and vision correction powers. For example, the accommodating IOL may provide for the axial movement of a monofocal optic to vary the focus of an image on the retina. Such accommodating IOLs often are limited by the amount of movement required to produce adequate accommodation. For example, an accommodating IOL to be substantially effective should produce from 2.5 diopters to 3.5 diopters of add power to result in adequate near vision. There may not be adequate accommodative mechanisms remaining in the pseudo-phakic eye to move a monofocal lens the desired amount.
There continues to be a need to provide IOLs which are effective to provide both distance vision correction and near vision correction.
SUMMARY OF THE INVENTION
New IOLs have been discovered. The present IOLs take advantage of employing an optic adapted to have two different configurations to enhance the accommodation achievable in the eye in response to normal accommodative stimuli. Thus, the present IOLs have a first configuration in which the optic of the IOL has a monofocal distance vision correction power, for example, with the IOL in its resting state. In this first configuration, the present IOLs retain the excellent vision characteristics of a conventional monofocal distance vision correction IOL. However, the optics of the present IOLs are further adapted to have a second configuration to provide a plurality of different optical powers, for example, a near vision correction power in addition to a far or distance vision correction power.
Thus, the present lenses provide for vision correction or focusing for both near objects and far or distance objects. The negative aspects of simultaneous vision which occur with multifocal IOLs, such as night driving and the halo/glare phenomenon, are reduced, or even eliminated, with the present IOLs in the monofocal distance state or configuration. With the present IOL in the multifocal or second configuration, adequate near vision, for example, up to about 3.5 diopters in add power, are provided. The present IOLs are substantially not limited by the amount of accommodative ability remaining in the pseudo-phakic eye. The shape or configuration of the IOL is selectively changed for near vision by the patient during accommodation, for example, by the patient focusing from distance to near.
The present IOLs are relatively straightforward in construction and to manufacture or produce, can be implanted or inserted into the eye using systems and procedures which are well known in the art, and function effectively with little or no additional treatment or medications being required.
In one broad aspect of the present invention, IOLs for use in a mammalian eye are provided. Such IOLs comprise an optic adapted to focus light toward a retina of a mammalian, e.g., human, eye. The optics are further adapted to have a first configuration to provide a single optical power and a second configuration to provide a plurality of different optical powers. The optics advantageously are moveable between the first configuration and the second configuration. Preferably, the optics are moveable in cooperation with the mammalian eye between the first configuration and the second configuration. For example, the optic can be reshaped or is reshapable between the first configuration and the second configuration. Such reshaping preferably occurs in cooperation with the mammalian eye.
The present IOLs include means acting to at least assist in moving the optic into the second configuration, for example, in moving the optic between the first and second configuration. Such means can be, and preferably is, part of the optic of the present IOLs. Preferably, such means acts to do at least one of: facilitate the movement of the optic in cooperation with the mammalian eye, and inhibit the movement of the optic in cooperation with the mammalian eye. Thus, for example, the means can be provided as part of the optic to at least assist in controlling the reshaping or configuring of the optic between the first configuration and the second configuration.
In one embodiment, the optic has an outer surface and the means is located in proximity to the outer surface. For example, the outer surface may be part of an outer layer or portion substantially surrounding a core. The outer layer or portion can be specifically configured to provide a monofocal vision correction with the optic in the first configuration, such as with the optic in the rest position, and/or desired multifocal vision correction powers with the optic in the second configuration, such as with the optic being reshaped, for example, compressed, by the action of the mammalian eye.
The optic preferably includes at least one region adapted and positioned to do at least one of: facilitate the movement of the optic in cooperation with the mammalian eye, and inhibit the movement of the optic in cooperation with the mammalian eye. This at least one region preferably is located in proximity to the outer surface of the optic. For example, the at least one region may be in the form of an annulus or band around the optical axis of the optic. This region may have reduced thickness or rigidity or may be otherwise weakened so that the optic, under the influence of the mammalian eye, can move to a second configuration and provide a different optical power at that region. Alternately, or in addition, a region may be provided which has increased thickness or rigidity or may be otherwise strengthened so that even under the influence of the mammalian eye, the optic is inhibited, or even substantially prevented, from having a different optical power at the region.
Advantageously, the optic includes a plurality of such regions. Such region or regions may be part of the outer layer or portion of the optic or may be otherwise located at or near the outer surface of the optic.
In a very useful embodiment, the optic includes an inner core and an outer layer or portion adjacent to the inner core, preferably with the inner core being more deformable than the outer layer. In this embodiment, the outer layer or portion preferably is structured to do at least one of: facilitate the movement of the optic in cooperation with the movement of the mammalian eye, and inhibit the movement of the optic in cooperation with the mammalian eye, for example, in a manner as described elsewhere herein.
The present IOLs preferably are fabricated from one or more flexible, fully cured deformable polymeric materials. For example, an outer layer or portion may be provided that selectively deforms due to prescribed varied wall thicknesses or hinged areas. The outer portion or shell preferably encases or surrounds a core, pre
Advanced Medical Optics, Inc.
Gluck Peter Jon
Matthews William H
McDermott Corrine
Uxa Frank J.
LandOfFree
Monofocal intraocular lens convertible to multifocal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Monofocal intraocular lens convertible to multifocal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monofocal intraocular lens convertible to multifocal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3119474