Monoclonal human natural antibodies

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S388100, C530S388150, C424S141100, C424S142100, C424S148100

Reexamination Certificate

active

06610833

ABSTRACT:

BACKGROUND OF THE INVENTION
The effector molecules of the immune system include a repertoire of circulating immunoglobulins non-attributable to exogenous antigenic induction, variously referred to as “autoantibodies” or “natural antibodies”. The existence of such antibodies has been long recognized and their various proposed functions may be classed as “self-attack” or “self-benefit”. For the former, the specter of autoimmunity is raised and the term “autoantibodies” is customarily applied. For the latter, the term “autoantibodies” is customarily applied. For the latter, designated “natural; antibodies”, support of homeostasis is implied.
U.S. patent application Ser. No. 08/271,210 filed Jul. 5, 1994, discloses a circulating natural human antibody immunoreactive with an arginine-rich epitope present on human protamine. U.S. Pat. No. 5,606,026 issued Feb. 25, 1997, discloses that the arginine-rich epitope is present in the Tat protein of HIV-1 and further discloses a second circulating human natural antibody immnunoreactive with a different epitope on the Tat protein of HIV-1. In addition, a third circulating human natural antibody immunoreactive with a cryptic epitope present on human lactoferrin is disclosed therein.
It has been shown that all three of the above-mentioned circulating human natural antibodies decrease after HIV infection reaching minimal levels as the patient progresses to AIDS. These antibodies are found in all sera of normal humans of all ages, from cord blood to adult, which, by virtue of their ubiquitous occurrence, are identified as natural antibodies.
Therefore, what is needed in the art are the monoclonal counterparts of these circulating human natural antibodies for their therapeutic and diagnostic uses.
SUMMARY OF THE INVENTION
The present invention provides monoclonal forms of human natural antibodies.
In one aspect, the present invention provides hybridoma cell line RWL-1 (ATCC CRL 12431), a product of the fusion of Epstein Barr virus (EBV) transformed umbilical cord blood cells and HMMA, mouse: human heteromyeloma cells.
In another aspect, the present invention provides monoclonal human IgM antibodies, produced by RWL-1 cells.
In yet another aspect, the present invention provides another hybridoma cell line, RWT-4 (ATCC CRL 12472), a product of the fusion of EBV-transformed umbilical cord cells with SHM-D33 cells (ATCC CRL 1668), mouse: human heteromyeloma cells.
In yet another aspect, the present invention provides monoclonal human IgM antibodies produced by RWT-4 cells.
In a still further aspect, the present invention provides hybridoma cell line RWT-12 (ATCC CRL 12477), a product of the fusion of EBV-transformed human umbilical cord cells and HMMA, mouse: human heteromyleoma cells.
In a still further aspect, the present invention provides monoclonal human IgM antibodies produced by RWT-4 cells.
In a still further aspect, the present invention provides a method for treating a patient suffering from an infection caused by HIV-1 comprising administering to a patient in need of such treatment an effective amount for treating said infection of a monoclonal antibody selected from the group consisting of antibodies produced by RWT-4 cells, RWT-12 cells, and mixtures thereof.
In a still further aspect, the present invention provides a method for increasing CD4+T cells in a patient suffering from an infection caused by HIV-1 comprising administering an amount for increasing CD4+T cells of antibodies produced by hybridoma cells having Accession Nos. ATCC CRL 12472 , ATCC CRL 12477 and mixtures thereof.
In a still further embodiment, the present invention provides a pharmaceutical formulation comprising isolated human IgM monoclonal antibodies selected from the group consisting of antibodies produced by hybridoma cell lines having Accession Nos. ATCC CRL 12472, ATCC CRL 12477, mixtures thereof and a pharmaceutical acceptable vehicle.


REFERENCES:
patent: 4997764 (1991-03-01), Balla Favera
patent: 5606026 (1997-02-01), Rodman
patent: 5656272 (1997-08-01), Le et al.
Manchester et al., Lactoferrin-Reactive Natural Antibodies, Annals New York Acad. of Sciences, 815:475 (1997).
Lachgar et al., Repair of the in Vitro HIV-1-Induced Immunosuppression and Blockade of the Generation of Functional Suppressive CD8 Cells By Anti-Alpha Interferon and Antit-Tat Antibodies, Biomed & Pharmacother. 50:13-18 (1996).
Brocke et al., Treatment of Experimental Encephalomyelitis with a Peptide Analogue of Myelin Basic Protein, Nature 379:343-46 (1996).
Re et al., Effect of Antibody to HIV-1 Tat Protein on Viral Replication in Vitro and Progression of HIV-1 Disease in Vivo, J. Acq. Imm. Def. Syndromes and Human Retrovir. 10:408-416 (1995).
Friedman et al., Predicting Molecular Interactions and Inducible Complementarity: Fragment Docking of Fab-Peptide Complexes, Proteins: Structure, Function and Genetics 20:15-24 (1994).
Coffman et al., Mechanism and Regulation of Immunoglobulin Isotype Switching, Advances in Immuno. 54:229-70 (1993).
Rodman et al., Human Immunodeficiency Virus (HIV) Tat-Reactive Antibodies Present in Normal HIV-Negative Sera and Depleted in HIV-Positive Sera. Identification of the Epitope, J. Exp. Med. 175:1247-53 (1992).
Varela et al., Population Dynamics of Natural Antibodies in Normal and Autoimmune Individuals, Proc. Natl. Acad. Sci. USA 88:5917-21 (1991).
Avrameas, Natural Autoantibodies: From ‘Horror Autotoxicus’ To ‘Gnothi Seauton’, Goday 12:154-160 (1991).
Urlacher et al., IgM Anti-Idiotypes That Block Anti-HLA Antibodies: Naturally Occurring or Immune Antibodies?, Clin. Exp. Immunol. 83:116-120 (1991).
Rodman et al., Identification of a Low-Affinity Subset of Protamine-Reactive IgM Antibodies Prsent in Normal, Deficient in AIDS, Sera: Implications of HIV Latency, Cl. Immun. and Immunopath. 57:430-440 (1990).
Posner et al., The Construction and Use of a Human-Mouse Myeloma Analogue Suitable For the Routine Production of Hybridomas Secreting Human Monoclonal Antibodies, Hybridoma 6:611-625 (1987).
Muñoz et al., New Experimental Criteria for Optimization of Solid-Phase Antigen Concentration and Stability in Elisa, J. Immuno. Methods 94:137-144 (1986).
Rodman et al., Naturally Occurring Antibodies Reactive with Sperm Proteins: Apparent Deficiency in AIDS Sera, Science 228:1211-15 (1985).
Rodman et al., p15, A Nuclear-Associated Protein of Human Sperm: Identification of Four Variants and Their Occurrence in Normal and Abnormal Seminal Cells, Gamete Research 8:129-47 (1983).
Goodman et al., Immunological Identification of Lactoferrin as a Shared Antigen on Radiodinated Human Sperm Surface and in Radioiodinated Human Seminal Plasma, J. Repro. Immuno, 3:99-108 (1981).
Hekman et al., The Antigens of Human Seminal Plasma (with Special Reference to Lactoferrin as a Spermatozoa-Coating Antigen), Protides Biol. Fluids 16:549 (1969).
Almond, N.M. and J.L. Heeney. 1998. Aids vaccine development in primate models.Aids12: (suppl.A) S133.-S140.
Bendelac, A. and D.T. Fearon. 1997. Innate immunity. Innate pathways that control acquired immunity.Curr. Opinion Immunol.9:1-3.
Cao, Y. et al. 1995. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection.New Eng.J.Med. 332:201-208.
Carroll, M.C. et al. 1998. Linkages of innate and adaptive immunity.Curr. Opinion Immunol.10:36-40.
Chen, P., M.Mayne, C. Power and A.Nath. 1997. The Tat protein of HIV-1 induces tunor necrosis factor alpha production. Implications for HIV-associated neurologic diseases.J. Biol. Chem. 272:22385-22388.
Coutinho, A. et al., 1995. Natural antibodies.Curr. Opinion Immunol. 7:812-818.
Crouau-Roy, B., et al. 1996. A fine-scale comparison of the human and chimpanzee genomes: linkage disequilibrium and sequence analysis.Hum. Mol. Genet. 5:1131-1137.
Cullen, B.R. 1991. Regulation of human immunodeficiency virus replication.Ann.Rev.Microbiol. 45:219-250.
Donahue, R.E., et al. 1998. Reduction in SIV replication in rhesus macaques infused with autologous lymphocytes engineered with antiviral genes.Nat. Med. 4:181-186.
Ehret, A., et al. 19

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monoclonal human natural antibodies does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monoclonal human natural antibodies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monoclonal human natural antibodies will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3112299

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.