Monoclonal antibodies and complementarity-determining...

Drug – bio-affecting and body treating compositions – Immunoglobulin – antiserum – antibody – or antibody fragment,... – Binds virus or component thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S130100, C530S300000, C435S345000

Reexamination Certificate

active

06875433

ABSTRACT:
In this application are described Ebola GP monoclonal antibodies, epitopes recognized by these monoclonal antibodies, and the sequences of the variable regions of some of these antibodies. Also provided are mixtures of antibodies of the present invention, as well as methods of using individual antibodies or mixtures thereof for the detection, prevention, and/or therapeutical treatment of Ebola virus infections in vitro and in vivo.

REFERENCES:
patent: 5792462 (1998-08-01), Johnston et al.
patent: 5977316 (1999-11-01), Chatterjee et al.
patent: 6340463 (2002-01-01), Mitchell et al.
patent: 6630144 (2003-10-01), Hart et al.
patent: 20030224015 (2003-12-01), Hart et al.
patent: 20040146859 (2004-07-01), Hart et al.
patent: WO 9637616 (1996-11-01), None
patent: WO 9932147 (1999-07-01), None
patent: WO 0000617 (2000-01-01), None
patent: WO 01016183 (2001-03-01), None
Maruyama et al, Journal of Virology, Jul. 1999, vol. 73, No. 7, pp. 6024-6030.*
Wilson et al., “Vaccine Potential of Ebola Virus VP24, VP30, VP35 and VP40 Proteins”, Virology 286, pp. 384-390 (2001).
Wilson and Hart, “Protection from Ebola Virus Mediated by Cytotoxic T Lymphocytes Specific for the Viral Nucleoprotein”, Journal of Virology, Mar. 2001, vol. 75, No. 6, pp. 2660-2664.
Pushko et al., “Venezuelan Equine Encephalitis Virus Replicon Vector: Immunogenicity Studies with Ebola NP and GP Genes in Guinea Pigs”, Vaccines 97, Molecular Approaches to the Control of Infectious Diseases, Cold Spring Harbor Laboratory Press, 1997, pp. 253-258.
Geisbert et al, “Evaluation in Nonhuman Primates of Vaccines Against Ebola Virus”, Emerging Infectious Diseases, vol. 8, No. 5, May 2000, pp. 503-507.
Pushko et al., “Recombinant RNA Replicons Derived from Attenuated Venezuelan Equine Encephalitis Virus Protect Guinea Pigs and Mice from Ebola Hemorrhagic Fever Virus”, JVAC, Vaccine, pp. 1-12.
Abstract, W33-5, Hooper et al., “DNA Vaccination Against Poxviruses Using Combinations ofIMV and EEV Immunogens”, Jul. 2000, American Society for Virology Meeting.
Abstract, P23-6, Hooper et al., DNA Immunization with the Vaccinia L1R and/or A33R genes, Jul. 1998, Poster at American Soceity for Virology Meeting.
Meyer et al., “Identification of Binding Sites for Neutralizing Monoclonal Antibodies on the 14-kDa Fusion protein of Orthopox Viruses”, Virology 200, pp. 778-783 (1994).
Czerny and Mahnel, “Structural and functional analysis of orthopoxvirus epitopes with neutralizing monoclonal antibocies”, J. General Virology (1990), vol. 71, pp. 2341-2352.
Hooper et al., “DNA Vaccination with Vaccinia Virus L1R and A33R Genes Protects Mice Against a Lethal Poxvirus Challenge”, Virology 266, pp. 329-339 (2000).
Vazquez and Esteban, “Identification of Functional Domains in the 14-Kilodalton Envelope Protein (A27L) of Vaccinia Virus”, J. Virology, vol. 73, No. 11, Nov. 1999, pp. 9098-9109.
Vazquez et al., “The Vaccinia Virus 14-Kilodalton (A27L) Fusion Protein Forms a Triple Coiled-Coil Structure and Interacts with the 21-Kilodalton (A17L) Virus Membrane Protein through a C-Terminal alpha-Helix”, J. Virology, vol. 72, No. 12, Dec. 1998), pp. 10126-10137.
Rodriguez et al., “The Vaccinia Virus 14-Kilodalton Fusion Protein Forms a Stable Complex with the Processed Protein Encoded bythe Vaccinia Virus A17L Gene”, J. Virology, vol. 67, No. 6, Jun. 1993, pp. 3435-3440.
Lai et al., “The Purified 14-Kilodalton Envelope Protein of Vaccinia Virus Produced inEscherichia coliInduces Virus Immunity in Animals”, J. Virology, vol. 65, No. 10, Oct. 1991, pp. 5631-5635.
Rodriguez and Esteban, “Mapping and Nucleotide Sequence ofthe Vaccinia Virus Gene That Encodes a 14-Kilodalton Fusion Proteins”, J. Virology, Nov. 1987, vol. 61, No. 11, pp. 3550-3554.
Rodriguez et al., “Isolation and Characterization of Neutralizing Monoclonal Antibodies to Vaccinia Virus”, J. Virology, Nov. 1985, vol. 56, No. 2, pp. 482-488.
PubMed Abstract from National Library of Medicine, of Sanderson et al., “The vaccinia virus A27L protein is needed forhte microtubule-dependent transport of intracellular mature virus particles”, J. Gen. Virol., Jan. 2000; 81 pt 1:47-58.
PubMed Abstract from National Library of Medicine, of Rodriguez et al., “Isolation and Characterization of Neutralizing Monoclonal Antibodies to Vaccinia Virus”, J. Virology, Nov. 1985, vol. 56, No. 2, pp. 482-488.
Lin et al., “Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo”, J. Virology, Apr. 2000, vol. 74, No. 7, pp. 3353-3365.
Gordon et al., “A Prominent Antigenic Surface Polypeptide Involved in the Biogenesis and Function of the Vaccinia Virus Envelope”, Virology 181, pp. 671-686 (1991).
Ichihashi et al., “Identification of a Vaccinia Virus Penetration Protein”, Virology 202, pp. 834-843 (1994).
Demkowicz et al., “Identification and Characterization of VAccinia Virus Genes Encoding Proteins That Are Highly Antigenic in Animals and Are Immunodominant in Vaccinated Humans”, J. Virology, Jan. 1992, vol. 66, No. 1, pp. 386-398.
Wilson et al., “Ebola virus: the search for vaccines and treatments”, CMLS Cell, Mol. Life, Sci., 58 (2001) pp. 1-16.
Geisbert et al., “Evaluation in Nonhuman Primates of Vaccines Against EbolA Virus”, Emerging Infectious Diseases, vol. 8, No. 5, May 2002, 15 pages.
Volchkov et al., “The envelopa glycoprotein of Ebolavirus contains an immunosuppressive-like domain similar to oncogenic retroviruses”, FEBS Letters, vol. 305, No. 3, Jul. 1992, pp. 181-184.
Ichihashi and Oie, “NeutralizingEpitope on Penetration Protein of Vaccinia Virus”, Virology 220, 1996, pp. 491-494.1
Wolffe et al., “A Myristylated Membrane Protein Encoded by the Vaccinia Virus L1R Open Reading Frame is the Target of Potent Neutralizing Monoclonal Antibodies”, Virology 211, 1995, pp. 53-63.
Roper et al., “Extracellular Vaccinia Virus Envelope Glycoprotein Encoded by the A33R Gene”, J. Virology, Jun. 1996, vol. 70, No. 6, pp. 3753-3762.
Isaacs et al., “Characterization of a Vaccinia Virus-Encoded 42-Kilodalton Class I Membrane Glycoprotein Component of the Extracellular Virus Envelope”, J. Virology, Dec. 1992, vol. 66, No. 12, pp. 7217-7224.
Sanchez et al., “Variation in the Glycoprotein nad VP35 Genes of Marburg Virus Strains”, Virology 240, pp. 138-146 (1996).
Hevey et al., “Marburg Virus Vaccines Based upon Alphavirus Replicons Protect Guinea Pigs and Nonhumans Primates”Virology 251, pp. 28-37 (1998).
Bukreyev et al., “The VP35 and VP40 proteins of filoviruses,” FEBS Letters, vol. 322, No. 1, May 1993, pp. 41-46.
Elliott et al., “Ebola protein analyses for the determination of genetic organization”, Archives of Virology, 1993, vol. 133, pp. 423-436.
Gilligan et al., “Assessment of Protective Immunity Conferred by Recombinant Vaccinia Viruses to Guinea Pigs Challenged with Ebola Virus”, Vaccines 97, 1997, pp. 87-92.
Hart et al., “Priming of anti-human immunodeficiency virus (HIV) CD8+ cytotoxic T cells in vivo by carrier-free HIV synthetic peptides”, PNAS USA, vol. 88, Nov. 1991, pp. 9448-9452.
Nicolet and Paulnock, “Promoter Analysis of an Interferon-Inducible Gene Associated wit hmacrophage Activation”, J. Immunology, 1994, pp. 152-162.
Vanderzanden et al., “DNA Vaccines Expressing either the GP or NP Genes of Ebola Virus Protect Mice from Lethal Challenge”, Virology 246, pp. 134-144 (1998).
International Search Report issued is corresponding international patent application PCT/US03/27450, mailed Mar. 10, 2004 (7 pages).
Wilson et al., “Ebola Virus; the search for vaccines and treatments.” CMLS Cel

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monoclonal antibodies and complementarity-determining... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monoclonal antibodies and complementarity-determining..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monoclonal antibodies and complementarity-determining... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3378305

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.