Mono- and di-fluorinated benzothiepine compounds as...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S342000, C514S431000, C546S122000, C546S279700, C549S009000

Reexamination Certificate

active

06740663

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to compounds, pharmaceutical compositions, and methods for treating high blood cholesterol levels in a subject. More particularly, the present invention relates to novel mono-fluorinated or di-fluorinated benzothiepine compounds that are useful as apical sodium co-dependent bile acid transport (ASBT) inhibitors, pharmaceutical compositions containing the same, methods for making the same and methods for treating hyperlipidemic conditions.
DESCRIPTION OF THE RELATED ART
The major metabolic fate of cholesterol in the human body is in the hepatic synthesis of bile acids. Bile acids are both passively and actively reabsorbed from the small intestine and recycled via the enterohepatic circulation to conserve the total pool of bile acids. Dietschy, “Mechanisms for the intestinal absorption of bile acids”,
J. Lipid Res
., 9:297-309 (1968). Bile acids undergo passive absorption in the proximal small intestine and active transport in the terminal ileum. Love et al., “New insights into bile acid transport”,
Curr. Opin. Lipidol
., 9 (3):225-229 (1998). Ileal active transport accounts for the majority of intestinal bile acid uptake and is the exclusive route for taurine-conjugated bile acids. Id. Ileal active transport is mediated by the apical sodium co-dependent bile acid transporter (“ASBT”, also known as the ileal bile acid transporter or “IBAT”) localized to the distal one-third of the ileum. Craddock et al., “Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter”,
Am. J. Physiol
., 274 (Gastrointest. Liver Physiol. 37):G157-G169 (1998).
An equilibrium generally exists between hepatic cholesterol and the bile acid pool. Interruption of the enterohepatic recirculation of bile acids (e.g., the binding of intestinal bile acids to a sequestering resin such as cholestyramine; the surgical removal of the ileum to physically eliminate ileal ASBT; or the specific inhibition of ileal ASBT) results in a decrease in the liver bile acid pool and stimulates increased hepatic synthesis of bile acids from cholesterol (i.e., an upregulation of cholesterol-7∀-hydroxylase activity), eventually depleting the liver's pool of esterified cholesterol. In order to maintain liver cholesterol levels necessary to support bile acid synthesis, the de novo synthesis of cholesterol increases in the hepatocytes (i.e., an upregulation of 3-hydroxy-3-methylglutaryl coenzyme-A reductase activity) and also increases the uptake of serum cholesterol by upregulating the number of cell surface low density lipoprotein cholesterol receptors (“LDL receptors”). The number of hepatic LDL receptors directly impacts serum low density lipoprotein (“LDL”) cholesterol levels, with an increase in the number of LDL receptors resulting in a decrease in serum cholesterol. The net result, therefore, is that serum LDL cholesterol levels decrease when intestinal bile acid reabsorption is reduced.
A class of antihyperlipidemic agents that operates by inhibiting bile acid reabsorption in the ileum recently has been identified. Examples of this class of agents include the substituted benzothiepines disclosed in U.S. Pat. No. 5,994,391. PCT Patent Application No. WO99/35135 discloses additional substituted benzothiazepine compounds for use as ASBT inhibitors. By way of further example, PCT Patent Application No. WO94/24087 discloses a group of substituted naphthalene compounds for use as ABST inhibitors. The United States Food and Drug Administration, however, has not approved any ASBT inhibitor for use as an antihyperlipidemic agent at this time.
Numerous antihyperlipidemic agents having other modes of action also have been disclosed in the literature as useful for the treatment of hyperlipidemic conditions and disorders. These agents include, for example, commercially available drugs such as nicotinic acid, bile acid sequestrants including cholestyramine and colestipol, 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors (“HMG Co-A reductase inhibitors”), probucol, and fibric acid derivatives including gemfibrozil and clofibrate.
The class of antihyperlipidemic agents known as HMG Co-A reductase inhibitors operates by inhibiting the hepatic enzyme 3-hydroxy-3-methylglutaryl coenzyme-A reductase (“HMG Co-A reductase”). Direct inhibition of HMG Co-A reductase by the monotherapeutic administration of HMG Co-A reductase inhibitors such as pravastatin has been shown to be a clinically effective method of lowering serum LDL cholesterol. Sacks et al., “The Effect of Pravastatin on Coronary Events after Myocardial Infarction in Patients with Average Cholesterol Levels”,
New England Journal of Medicine
, 335(14):1001-9 (1996). Monotherapeutic treatment with pravastatin may lead to upregulation of cell surface LDL receptors as a mechanism to provide cholesterol to the liver in support of bile acid synthesis. Fujioka et al., “The Mechanism of Comparable Serum Cholesterol Lowering Effects of Pravastatin Sodium, a 3-Hydroxy-3-Methylglutaryl Coenzyme A Inhibitor, between Once- and Twice-Daily Treatment Regimens in Beagle Dogs and Rabbits”,
Jpn. J. Pharmacol
., Vol. 70, pp. 329-335 (1996).
The administration of an ASBT inhibitor in combination with an HMG Co-A reductase inhibitor is generally disclosed in PCT Application WO98/40375.
The treatment of hypercholesterolemia with an HMG Co-A reductase inhibitor in combination with a bile acid sequestering resin also has been reported in the literature. The administration of the HMG Co-A reductase inhibitor lovastatin in combination with the bile acid sequestering resin colestipol is disclosed in Vega et al., “Treatment of Primary Moderate Hypercholesterolemia With Lovastatin (Mevinolin) and Colestipol”,
JAMA
, Vol. 257(1), pp. 33-38 (1987). The administration of the HMG Co-A reductase inhibitor pravastatin in combination with the bile acid sequestering resin cholestyramine is disclosed in Pan et al., “Pharmacokinetics and pharmacodynamics of pravastatin alone and with cholestyramine in hypercholesterolemia”,
Clin. Pharmacol. Ther
., Vol. 48, No. 2, pp. 201-207 (August 1990).
The treatment of hypercholesterolemia with other selected combination regimens also has been reported in the literature. Ginsberg, “Update on the Treatment of Hypercholesterolemia, with a Focus on HMG Co-A Reductase Inhibitors and Combination Regimens”,
Clin. Cardiol
., Vol. 18(6), pp. 307-315 (June 1995), reports that, for resistant cases of hypercholesterolemia, therapy combining an HMG Co-A reductase inhibitor with either a bile acid sequestering resin, niacin or a fibric acid derivative generally is effective and well tolerated. Pasternak et al., “Effect of Combination Therapy with Lipid-Reducing Drugs in Patients with Coronary Heart Disease and ‘Normal’ Cholesterol Levels”,
Annals of Internal Medicine
, Vol. 125, No. 7, pp. 529-540 (Oct. 1, 1996) reports that treatment with either a combination of the HMG Co-A reductase inhibitor pravastatin and nicotinic acid or a combination of pravastatin and the fibric acid derivative gemfibrazol can be effective in lowering LDL cholesterol levels.
It is desirable to provide novel ASBT inhibitors that exhibit improved efficacy, improved potency, and/or reduced dosing requirements for the active compounds relative to the specific combination regimens previously disclosed in the published literature.
SUMMARY OF THE INVENTION
According to one embodiment, the invention comprises novel fluorinated benzothiepine compounds corresponding to Formulas I-1 to I-24 (see the Detailed Description, infra) that are effective agents for the treatment of one or more hyperlipidemic condition(s).
According to another embodiment, the invention comprises pharmaceutical compositions comprising one or more of the novel fluorinated benzothiepine compounds corresponding to Formulas I-1 to I-24 that are suitable for use in treating one or more hyperlipidemic condition(s).
According to yet another embodiment, the invention comprises a method for treating one or more hyperlipidemic condition(s) co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mono- and di-fluorinated benzothiepine compounds as... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mono- and di-fluorinated benzothiepine compounds as..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mono- and di-fluorinated benzothiepine compounds as... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3211809

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.