Monitoring of vehicle health based on historical information

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle diagnosis or maintenance indication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S024000, C701S030000, C701S035000, C706S012000, C702S187000, C340S439000

Reexamination Certificate

active

06836708

ABSTRACT:

BACKGROUND OF THE INVENTION
In the United States, automotive mechanics are not always viewed as being fully trusted and reliable. Practicality indicates that automotive mechanics typically are not fraudulent, but rather overwhelmed with the complexity of the modern computer-controlled vehicle. With hundreds of parameters dictating a vehicle's performance, it may be difficult to pinpoint the source of the problem regardless of the mechanic's skill level. There has also been decay in the number of households that perform basic maintenance to their own vehicles. The primary reason again relates to the increase in complexity of the modern vehicle.
The problem with the current approach for diagnosis and maintenance is that it is performed in a static manner. Typical diagnosis of a vehicle's performance is based on a single snap shop image of the vehicle's characteristics. Presently, adequate use of vehicle and driving mode specific historical information is not used to assist in this process.
Present diagnostic tools that interface to the vehicle computer will show various sensor data and information. However, aside from actual fault codes from the vehicle, these tools do not contain tolerances for each and every vehicle type and driving conditions for the vast available parameters. As a result, the mechanic must determine from hundreds of available parameters the potential cause of the problem. This requires extensive expertise and references to technical manuals on sensor input and output status for that vehicle type. Ultimately, vehicle maintenance and diagnosis can be complicated and costly, considering the current tools that are available.
Onboard Diagnostics, or OBD, was developed primarily for monitoring the vehicle's emissions control systems by the Engine Control Module (ECM), which will typically display a general warning to the operator when a fault is detected. It also provides a means by which a mechanic or vehicle inspector can access specific fault codes related to engine hardware that can affect emissions and engine performance. The OBD system is accessible via a standardized communications cable and a microprocessor-based device, often referred to as a scan tool, that implements a standardized communications protocol. Data from onboard sensors can be accessed at a rate of up to 50 Hz.
Prior art includes U.S. Pat. No. 5,539,638 to Keeler et al. and U.S. Pat. No. 5,625,750 to Puskorius et al. that claim the use of artificial intelligence computer systems that can be trained to predict failure of the catalytic converter and to predict certain emissions levels. Both standard OBD sensors and additional sensors are used to generate inputs into these learning algorithms. Prior systems do not attempt to establish parameters during different driving and vehicle conditions. Instead, generic broad parameters are established covering multiple vehicles and driving conditions. Prior systems also use several parameters in conjunction to predict a certain condition, such as high hydrocarbon emissions.
SUMMARY OF THE INVENTION
The federal government has mandated that all vehicles sold in the United States shall have a standardized interface to the vehicle's computer. The present invention provides a vehicle analyzer that can be embodied as a microprocessor-based hardware/software package designed to communicate with OBD (onboard diagnostics) computer systems contained in 1996 and later vehicles sold in the United States. The present invention provides a product that is useful for both the consumer and the professional.
A method of detecting abnormal engine behavior in a vehicle, according to an aspect of the invention, includes providing a database, a communication device and an interface to an engine control module and retrieving engine parameters through the interface during a driving experience and uploading the engine parameters to the database using the communication device. The method further includes analyzing the uploaded engine parameters from multiple driving experiences at the database to establish historical data and determining normal operation of particular retrieved engine parameters based on the historical data. The method further includes comparing engine parameters of a vehicle to be diagnosed with the normal operation of particular retrieved engine parameters to determine whether the vehicle to be diagnosed operates outside of the normal operation.
A method of detecting abnormal engine behavior in a vehicle, according to another aspect of the invention, includes providing a database and multiple vehicle analyzers, each of the vehicle analyzers including a communication device and an interface with an engine control module. The method further includes retrieving engine parameters for multiple vehicles that are generally the same type as each other using the multiple vehicle analyzers and uploading the retrieved engine parameters to the database. The method further includes analyzing the uploaded engine parameters from the multiple vehicles to establish historical data and determining normal operation of particular retrieved engine parameters based on the historical data. The method further includes preparing engine parameters of a vehicle generally of the same type with the normal operation of particular retrieved engine parameters to determine whether the vehicle operates outside the normal operation.
In either of the above-identified methods, the analyzing may include retrieving engine parameters over multiple driving experiences, storing the data over multiple driving experiences into the database and establishing statistical control limits for the particular engine parameters. This may further include establishing statistical control limits for particular engine parameters during various driving conditions which may include idle, steady cruise at various speeds, and various rates of acceleration and deceleration. The particular engine parameters may include critical engine parameters. The historical data may be based on engine parameters retrieved previously from the vehicle to be diagnosed.
In either of the above-identified methods, the uploading may include communicating over either an Internet or an Intranet. The communication may be via wireless communication. The uploading may include communicating over a global network and may further include providing a wireless communication device that is adapted to connect with the database over the global network. The communication device may include browser software and the interface may include an onboard diagnostic interface.
A system for detecting abnormal vehicle engine behavior, according to an aspect of the invention, includes a vehicle analyzer having a communication device and an interface that links the wireless communication device to a vehicle. The system further includes a database system that is separate from the vehicle analyzer. The wireless communication device collects data from the vehicle through the interface scan tool while the vehicle is driven. The database system is programmed to receive data broadcast by the wireless communication device from the scan tool. The database includes normal operation of particular engine parameters based on historical data. The database system compares the collected data to the normal operation of particular engine parameters to determine normal conditions of the vehicle.
A system for detecting abnormal vehicle engine behavior, according to another aspect of the invention, includes a database and a plurality of vehicle analyzers, each including a communication device and an interface that links the communication device to a vehicle. The communication device is adapted to upload to the database engine parameters retrieved by the interface. The database is adapted to analyze the retrieved engine parameters uploaded from a plurality of vehicle analyzers to establish historical data among vehicles that are generally of the same type and to determine normal operation of particular retrieved engine parameters based on historical data. Th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monitoring of vehicle health based on historical information does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monitoring of vehicle health based on historical information, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monitoring of vehicle health based on historical information will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3299896

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.