Monitoring of connection between network devices in a...

Multiplex communications – Diagnostic testing – Determination of communication parameters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S445000, C370S465000, C709S228000, C709S237000

Reexamination Certificate

active

06603741

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to packet-based data communication networks and particularly an Ethernet network or similar network wherein data may be transferred between devices, particularly a hub and another network station such as a personal computer, at at least two different rates, the devices being able to establish a selected data rate by means of auto-negotiation. The invention is particularly though not necessarily exclusively intended for use with an auto-negotiation scheme as defined in IEEE 802.3, 1998 Edition, Clause 28.
BACKGROUND TO THE INVENTION
As switching and other technology has improved, the rate at which data may be transferred between network devices has increased. Currently there are various standards to which successive generations of network devices has been designed to operate. In particular a standard data rate of 10 Megabits per second has been partly supplanted by a standard of 100 Megabits per second and is expected to be supplanted by an even faster rate, 1 Gigabit per second. An increase in standard data rates may be expected in the future.
However, network devices operating according to obsolescent standards, normally at a lower data rate or rates, continue to be used. It therefore follows that it is known for a network hub to be capable of exchanging data with another network station at a plurality of different selectable rates. It is also known, and specified in for example the above mentioned network standard for a hub and a station to which it is connected to commence a ‘conversation’ by means of a process of auto-negotiation, wherein a device such as a network hub establishes by means of interrogation and response whether the other station is capable of transmitting and receiving data at the higher of two rates or a rate of which is highest of a multiplicity of rates, so that thereafter the devices, such as the hub and the other station, exchange or transmit information from one to the other at the selected higher or highest mutually acceptable rate. Auto-negotiation is fully explained in, for example, IEEE Std 802.3, 1998 Edition, published by the Institute of Electrical and Electronics Engineers, Inc., NY-10017-2394, USA.
It is known to maintain a connection between a hub and another station by means of a continuous sequence of symbols representing an idle state. When one station at either end of the connection wishes to send data then by convention it sends at least a first symbol followed by a second symbol, representing a ‘carrier’ signal. The data then follows in the format defined by the appropriate standard. At the end of the data packet a third predetermined symbol, followed by a fourth predetermined symbol, is sent so as to represent the end of the carrier. Such a sequence is conventionally repeated for each and every packet transmitted between the stations. Typically, the first and second symbols are a J and K symbol and the third and fourth symbols are a T and R symbol.
In our earlier patent application number 9810810.3, filed May 20, 1998, we describe and claim an improvement which includes the monitoring at one of the stations, namely the hub, the occurrence of an error represented by a symbol other than an idle state immediately followed by an idle state symbol, comparing a rate of occurrence of errors with a threshold and forcing the data connection to proceed at the lower rate if the aforementioned error rate exceeds the threshold.
Such a scheme is effective to monitor the quality of the connection. For example, although the devices which are connected by auto-negotiation may have the ability and the performance appropriate to a higher rate achieved by auto-negotiation, the physical link between them may not be of sufficient quality or may become degraded, so that the reliability and throughput of the connection is insufficient or is reduced. The earlier proposal facilitates the detection, by the monitoring of specific errors of a loss of quality of the connection or insufficient quality and if the error rate representing a parameter of the quality of the cable exceeds some selectable threshold rate, the link may be automatically downgraded to a lower rate selectable by auto-negotiation.
However, a system of that kind, and systems of possibly the same general character, may in a variety of circumstances fail to complete a link between devices properly.
For example, both ends of a link may be capable of higher rate operation yet the physical link may not be capable of supporting the selected higher date rate. For example, in the case of 10BASE-T/100BASE-TX operation, it is possible that certain channel characteristics can cause a situation wherein auto-negotiation can complete, because it uses the robust 10BASE-T link pulse signaling system, and select a highest common denominator of 100 Megabits per second yet the channel is not of sufficient quality for the 100BASE-TX link to be established.
10BASE-T link pulses are more likely to be correctly received due to the higher transmit amplitude level and margin at the receive threshold matching. Such a communications link is more reliable than a 100BASE-TX link. The 100BASE-TX linkOk requires a reliable presence of the received idle symbol stream and on a low quality link this may not be achieved.
When this occurs, the auto-negotiation state will time out as it never sees the required ‘link ok’ and restarts auto-negotiation. In the particular example, the state machine which controls the auto-negotiation process (shown in FIG. 28-16 of the aforementioned publication) will not execute the transition from the state ‘FLP LINK GOOD CHECK’ to ‘FLP LINK GOOD’ but will execute the transition to ‘TRANSMIT DISABLE’ and thence to ‘ABILITY DETECT’, recommencing an auto-negotiation sequence. The new sequence of auto-negotiation again results in a selection of the higher rate (100BASE-TX) and owing to the sub-standard link the cycle will repeat continuously. Establishment of a link between the devices will not occur.
Another difficulty that exists arises from the provision of a substandard link with a device which is capable of ‘smart auto-sensing’ with a high quality receiver, connected to a far end device which has a low quality receiver and is not capable of ‘smart’ auto sensing. Here a ‘high-quality’ receiver is meant to refer to a receiver which by virtue of a decision-feedback equalizer or otherwise has a high immunity to inter-symbol interference. Also the qualification ‘smart’ refers to a device of the general character described in the aforementioned application, that is to say a device which is capable of auto-negotiation, that is to say selection of the higher rate of or highest feasible rate of a multiplicity of possible data rates preferably in accordance with the aforementioned standard and is also capable of monitoring the link for the occurrences of errors, so as to be capable of downgrading the link to a lower of the possible rates in the event of detection of an undue proportion of specific errors. Notwithstanding the robustness of such a scheme, various situations can occur which may defeat the ‘smart’ device. The link could be established yet the non-smart device with the low quality receiver could be subject to multiple errors whereas the smart device with the high quality receiver would be immune to them. There is now in effect a substandard link that a ‘smart’ auto sensing scheme would not protect.
In this situation the continuous auto-negotiation would still occur because it would be forced by the device that was unable to establish the link.
SUMMARY OF THE INVENTION
The present invention is based on the detection of occurrences of an auto-negotiation process or cycle. This could be achieved in a variety of ways, depending on the nature of the auto-negotiation. One example is the use of bit
6
.
1
as defined in clause 28.2.4.1.5 and Table 28-5 of the aforementioned standard, this bit being a ‘Page-Received’ bit in an auto-negotiation expansion register which is one of the dedicated registers for a state machine controlling the auto-negotiation func

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monitoring of connection between network devices in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monitoring of connection between network devices in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monitoring of connection between network devices in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3115345

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.