Incremental printing of symbolic information – Ink jet – Fluid or fluid source handling means
Reexamination Certificate
2000-02-01
2001-09-18
Le, N. (Department: 2861)
Incremental printing of symbolic information
Ink jet
Fluid or fluid source handling means
Reexamination Certificate
active
06290343
ABSTRACT:
FIELD OF INVENTION
The present invention generally relates to print cartridges used in computer controlled printers, and more particularly, to methods and apparatus for delivering ink to such print cartridges.
BACKGROUND OF INVENTION
One problem in ink-jet printing is that some applications require a large supply of ink. For example, “large format” applications use large size printing media (for example, 22 inch×34 inch, 34 inch×44). Examples of large format applications include computer aided design (engineering drawings), mapping, graphic arts, and posters. The large format printed image can use a large amount of ink either because of the large printed area needing to be covered with ink or the use of 100 percent filled-in image areas, or both. Therefore, it is desirable to have ink reservoirs that contain a large amount of ink to avoid replacing an empty ink reservoir in the middle of a printing cycle or the frequent changing of the ink reservoir between printing jobs.
However, merely increasing the size of the ink reservoir in an on-board system to hold more ink has not proved to be an acceptable solution. The ink reservoir is supported on the printer carriage and moves with the printhead. Increasing the amount of ink in motion would necessarily require an increase in the size and weight of the structure that supports and moves the carriage back and forth. The increased mass of the carriage would also significantly increase the cost of the printer (for example, larger and more expensive electrical motors).
In response, recently, relatively large ink reservoir systems have developed in which the reservoir is mounted off-board.
In contrast to on-board reservoirs, printing systems using off-board ink reservoirs require means for delivering the ink from the off-board ink reservoir to the printhead. Pumps can be used for such delivery, but such pumps have problems associated with their use. For example, the ingredients in the ink can be incompatible with the pump components, and such components as diaphragms and seals can degrade when exposed to the ink solvents for extended time periods.
A second problem in ink-jet delivery arises in color printing. Color printing typically uses multiple ink reservoirs, each containing ink of a different hue. Since each ink reservoir must be individually pressurized, multiple pumps can be used. However, the addition of each additional pump increases the cost of the overall printing system. Thus, it would be desirable to use one pump that can provide the necessary pressure for all the ink reservoirs individually.
One other problem in ink-jet technology is that the customers have different purchasing criteria. Some customers, with high ink usage rate, may prefer the lower, “unit price” of a large ink reservoir. Other customers, may prefer a lower, “start-up” price of a smaller ink reservoir. Thus, it would be beneficial for the customers to have a printing system that is adaptable to ink reservoirs with different sizes. In addition, the manufacturer also benefits when the size of the ink reservoir is not a limiting factor in the design of the printer or the ink delivery system.
SUMMARY OF THE INVENTION
Briefly and in general terms, an apparatus for delivering pressurized ink to a printhead, according to the invention, includes a deformable bag for holding ink, a pressurizable container substantially surrounding the bag for exerting fluid pressure on said bag and pressurizing any ink within the bag, and a sealable ink outlet port for fluid communication with the ink bag. The port is fluidically connectable to the printhead so that pressurized ink is deliverable to the printhead.
The invention contemplates a process having the steps of: providing a deformable bag for holding ink for a printhead; substantially surrounding the bag with a pressurizable container; exerting fluid pressure on the bag by pressurizing the container, thereby pressurizing any ink within the bag; and delivering pressurized ink to the printhead.
In a presently preferred embodiment of the invention, the air pressure system is incorporated as part of a replaceable auxiliary ink supply as well as part of a replaceable ink delivery system having air, ink and electric signal connections to the auxiliary ink supply. The air pressure applied to the auxiliary ink supply is monitored to be maintained in a predetermined range in accordance with a start-up sequence, an operational sequence, a waiting time, and a close-down sequence.
REFERENCES:
patent: 4183030 (1980-01-01), Kaieda et al.
patent: 4558326 (1985-12-01), Kimura et al.
Barinaga John A
Gasvoda Eric L
Lewis Richard H
Monclus Antoni
Puchal Xavier Gasso
Hewlett--Packard Company
Le N.
Vo Anh T. W.
LandOfFree
Monitoring and controlling ink pressurization in a modular... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Monitoring and controlling ink pressurization in a modular..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monitoring and controlling ink pressurization in a modular... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2507406