Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...
Reexamination Certificate
2001-03-21
2002-11-19
Carr, Deborah (Department: 1621)
Organic compounds -- part of the class 532-570 series
Organic compounds
Fatty compounds having an acid moiety which contains the...
C554S124000
Reexamination Certificate
active
06482965
ABSTRACT:
TECHNICAL FIELD
The present invention relates to molybdenum soap-containing metallic soap used as an adhesive for accelerating the adhesion between a steel cord for radial tires and rubber, a hardener of unsaturated polyester resin, a hardening promoter for paints, a lubricant, a petroleum additive, catalysts for various chemical reactions and to a method for producing the same.
BACKGROUND ART
Metallic soaps containing cobalt or nickel as a principal metal are produced, for example, by a double decomposition method in which an aqueous sodium naphthenate solution and an aqueous metal sulfate solution are reacted, a direct method in which naphthenic acid and a metal salt are directly reacted, or the like.
However, upon synthesis of metallic soaps containing molybdenum as a principal metal, for example, molybdenum naphthenate, it is difficult to synthesize a fatty acid molybdenum soap in good yield since the reactivity between a metal salt, such as molybdenum trioxide, ammonium molybdate, or sodium molybdate that serves as a raw material for molybdenum, and a fatty acid is low, so that the following methods have been proposed.
The method in which a molybdenum compound and a monocarboxylic anhydride are reacted (Japanese Patent Application Laid-open No. 6-219990),
The method in which acetic anhydride is used to obtain monocarboxylic acid molybdenum through the reaction between a molybdenum compound and a monocarboxylic acid (Japanese Patent Application Laid-open No. 6-48978).
The method in which molybdenic acid produced by a precipitation method is washed by water without drying and then reacted with a monocarboxylic acid under heating (Japanese Patent Publication No. 63-35616),
The method in which an alkali metal salt of molybdenic acid, molybdenum halide, ammonium molybdate, molybdenum oxide and ammonia, or mixtures of these and a monocarboxylic acid are reacted at 100 to 300° C. (Japanese Patent Publication No. 52-50768),
The method for producing an organic molybdenum compound in which a molybdenum acid salt obtained by reacting with hydrochloric acid in an aliphatic alcohol is reacted with an organic acid such as a higher fatty acid, naphthenic acid, or a resin acid under heating to a final state where the alcohol is absent (Japanese Patent Publication No. 46-2497),
The method in which in the reaction between molybdenum and a carboxylic acid, molybdenum trioxide, oxalic acid, water and hexanoic acid are heated (Japanese Patent Publication No. 42-21326), and the like.
However, the molybdenum soaps obtained by these synthetic methods contain unreacted fatty acids. This is caused by the low reactivity between molybdenum and fatty acids and the occurrence of solidification as the reaction proceeds because the molybdenum soaps have high softening points. The unreacted fatty acids in many cases degrade the molybdenum soap-containing metallic soaps properties so that their presence is undesirable.
Furthermore, when composite metallic soaps constituted by a molybdenum soap and another metallic soap are produced, a metallic soap synthesized in a separate batch is to be mixed with the other molybdenum soap. In this case, although the fatty acids contained in the molybdenum soap are preferred from the viewpoint of mixing, the presence of fatty acids was a cause of a deterioration in the properties of composite metallic soaps as in the case of producing the molybdenum soap alone. On the other hand, since a decrease in the amount of unreacted fatty acid in the molybdenum soap results in solidification or production of a liquid having a high viscosity, it has been difficult to prepare a homogeneous composite metallic soap.
As described above, the above-described methods are insufficient from the viewpoint of producing a homogeneous composite soap constituted by a mixture of a molybdenum soap and another metallic soap in good yields and without remaining unreacted fatty acids, and no method has presently been found for economically producing a molybdenum soap-containing metallic soap that contains less by-products and has good storage stability.
DISCLOSURE OF THE INVENTION
Under the circumstances, an object of the present invention is to produce a homogeneous molybdenum soap-containing composite metallic soap in good yields.
The present inventors have made investigation with a view to developing a method for producing a homogeneous molybdenum soap-containing composite metallic soap in good yields, and as a result, they have now found that the production of a molybdenum soap under the conditions where a fatty acid is in excess and the addition of a metal compound to the resulting fatty acid-containing molybdenum soap for reaction with the fatty acid can readily produce a homogeneous molybdenum soap-containing composite metallic soap in high yields. Furthermore, they also found that as another embodiment, the synthesis of a molybdenum soap by reaction of a fatty acid and a molybdenum compound in the presence of a fatty acid and a metal compound that forms a metallic soap having a softening point of 120° C. or less, or in the presence of a metallic soap having a softening point of 120° C. or less, can readily produce a homogeneous molybdenum-containing composite metallic soap in high yields. Thus, the present invention has been completed based on the findings.
That is, the present invention is directed to:
(1) A method for producing a molybdenum soap-containing metallic soap, comprising the steps of reacting a fatty acid and a molybdenum compound under conditions where the fatty acid is in excess to synthesize a molybdenum soap and then adding an inorganic metal compound other than the molybdenum compound for reaction with the excess amount of fatty acid.
(2) The method for producing a molybdenum soap-containing metallic soap as described in (1) above, characterized in that no oxalic acid is added, and the fatty acid and the molybdenum compound are reacted directly at a fatty acid-to-molybdenum molar ratio of 3/1 or more to synthesize a fatty acid molybdenum soap.
(3) A molybdenum soap-containing metallic soap, characterized in that a molybdenum soap and a metallic soap other than the molybdenum soap contain the same fatty acid.
(4) A method for producing a molybdenum soap-containing metallic soap, comprising the steps of reacting a molybdenum compound and a fatty acid in the presence of a fatty acid and an inorganic metal compound other than molybdenum compound that form a metallic soap having a softening point of 120° C. or less.
(5) A method for producing a molybdenum soap-containing metallic soap, comprising the steps of synthesizing a molybdenum soap in the presence of a metallic soap having a softening point of 120° C. or less.
(6) The method for producing a molybdenum soap-containing metallic soap as described in (4) or (5) above, comprising the steps of synthesizing the molybdenum soap without addition of any oxalic acid.
(7) The method for producing a molybdenum soap-containing metallic soap as described in (4) or (5) above, characterized in that the atomic ratio of the molybdenum to the inorganic metal other than molybdenum, which are contained in the molybdenum soap-containing metallic soap, is ½ or less.
(8) A molybdenum soap-containing metallic soap, characterized by containing a metallic soap other than a molybdenum soap, having a softening point of 120° C. or less.
BEST MODE FOR CARRYING OUT THE INVENTION
Now, a first embodiment of the present invention will be explained.
The fatty acid as referred to herein means natural or synthetic, saturated or unsaturated fatty acids having a principal chain having from 6 to 30 carbon atoms or mixtures thereof. Specific examples thereof include caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, arachic acid, behenic acid, oleic acid, linoleic acid, linolenic acid, ricinoleic acid, 12-hydroxystearic acid, dimeric acid, tallate, naphthenic acid, neodecanoic acid, a resin acid or natural oil and fat fatty acids containing these as main components, for example, fish oil har
Imori Toru
Yoshida Mizuho
Carr Deborah
Flynn ,Thiel, Boutell & Tanis, P.C.
Japan Energy Corporation
LandOfFree
Molybdenum soap-containing metallic soap and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Molybdenum soap-containing metallic soap and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molybdenum soap-containing metallic soap and method for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2921554