Molecular probes for targeting of cell density-indicating...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Liposomes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S002600, C514S006900, C424S178100, C424S630000, C424S646000, C424S179100, C424S186100, C424S181100

Reexamination Certificate

active

06416785

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to photodynamic antimicrobial chemotherapy (PACT) and in particular to molecules which are capable of identification and targeting of cell density-indicating compounds secreted by bacteria.
2. Invention Disclosure Statement
Bacteria infection or contamination has been a problem in different areas, and various methods have attempted to solve the problem. A major breakthrough is the discovery and later synthesis of antibiotics. However, most antibiotics have a limited anti-bacterial spectrum, and varieties of bacterial strain have been found antibiotic-resistant. Moreover, certain antibiotics have serious side effects when administered systemically, especially in the treatment of focal infections because a large dosage has to be given for the drug to reach the therapeutic concentration in the infected area. Scientists have long been trying to find new methods to treat bacteria infections more effectively and with fewer side effects.
Photodynamic antimicrobial chemotherapy (PACT) is one of the technologies developed in recently years. Wainwright M,
Photodynamic antimicrobial chemotherapy
(
PACT
), J. Antimicrobial Chemotherapy, 42: 13-28 (1998) discloses the PACT-technology utilizing photosensitizers, which is effective against bacteria, yeast, virus, and parasites in vitro. It is thought that delivering energy (e.g. radiation) to a photosensitizer (such as chlorin compound, or phthalocyanine) results in the formation of singlet oxygen which is a highly reactive form of oxygen. Singlet oxygen functions as a toxic agent that kills bacterial cells. This technique is often used for sterilization of blood preparations. However, since singlet oxygen also harms normal cells, the PACT-technology is mainly restricted to local dental treatment in vivo.
Another attempt has been focused on the destruction of biofilms. Biofilms are biological films which are produced by the bacteria. Since biofilms can trap nutrients and also play an important role in cell-cell communication between bacterial cells, destruction of biofilms may prevent or treat bacterial infections. Both WO 99/27786 and WO 98/57618 disclosed compounds that can control biofilm formation.
Dunny G W and Winans S C,
Cell
-
cell signaling in bacteria,
ASM Wash. D.C. (1999) and England R et al.,
Microbial signaling and communication,
Symposium 57 of the General Microbiology, Cambridge University Press, (1999) have shown the cell-cell communication system from several unicellular bacteria. The cell-cell communications are both intraspecies-specific and interspecies-specific. Such communication system comprises molecules which are called autoinducers or quorum sensors. Gram-negative bacteria (e.g. Vibrio, Pseudomonas, or Yersinia) accumulate acyl-homoserine lactones (acyl-HSL) in the bacterial cells and in their surroundings, such as nutrient medium or biofilms. In acyl-HSL, the moiety HSL is common for all gram-negative bacteria, whereas the species-specificity is given by the various acyl residues. Bassler B L,
How bacteria talk to each other: regulation of gene expression by quorum sensing,
Current Opinion in Microbiology, 2: 582-587, (1999) demonstrates HSL with various acyl-chains can be considered as members of cell density sensor (or autoinducer AI-1) family of gram-negative bacteria. In different species, the acyl residues have different characteristics, such as different length, and different degree of saturation in their C—C bonds. Acyl-HSL can activate several molecular pathways in bacteria when a significant population of cells has accumulated, and the activation leads to species-specific responses (e.g. virulence, formation of antimicrobial immune modulating compounds). This type of regulation is named “quorum sensing” because the activation is cell-density dependent. Quorum sensing is critical in biofilm formation, and both WO 99/27786 and WO 98/57618 utilized such characteristics of HSL to provide compounds, which block the quorum sensing and thus prevent biofilm formation.
Acyl-HSL is identified by various biosensor tests and chemical standard methods. Biosensors usually detect bacteria cells directly. Using a probe for identification of HSL as common moiety of all acyl-HSL has not yet been described. Gamma-butyrolactones are signal molecules which control the secondary metabolism in Streptomyces species. Novick R P and Muir T W,
Virulence gene regulation by peptides in staphylococci and other gram
-
positive bacteria,
Current Opinion in Microbiology, 2: 40-45 (1999) show gram-positive bacteria (e.g. Streptococcus, Staphylococcus) communicate their cell density via extracellular peptides. These peptides are species-specific. Group specific domains of the various cell density indicating peptides (like HSL in acyl-HSL) are not known so far. Recently, WO 00/32152 discloses a new autoinducer, AI-2 or 4,5-Dihydroxy-2,3-pentanedione, which communicates interspecies-specific signals between gram-negative and gram-positive bacteria. AI-2 cell density sensor probably belongs to a new family of cell density sensors since WO 00/32152 shows that the various OH-groups in 4,5-Dihydroxy-2,3-pentanedoine may be replaced by other residues in other bacteria.
A possibility for increasing the concentration of photosensitizers accumulated in areas of focal bacterial infections is the use of dendrimers as multiplier molecules. Jansen J et al.,
Encapsulation of Guest Molecules into a Dendritic Box,
Science, 266: 1226-1229, (1994) demonstrate that dendrimers are molecules for guest host embedding. Dendrimers are also molecules for multiple covalent coupling of photosensitizers to the periphery of the dendrimer.
Attempts also have been made to minimize side effects of antimicrobial compounds, such as photosensitizers, by linking them to monoclonal antibodies which directly bind on the surface of pathogenic bacteria. This method seems to be not economical for several reasons: first, it is costly to raise monoclonal antibodies; second, fast mutation rate of variety of bacteria require different monoclonal antibodies for different strains as well as for different mutants. Moreover, the usually large quantity of bacteria infected increases the dosage requirement of the drug.
It is well known that a focal disease is characterized by high concentration of bacteria, and hence by a high extracellular concentration of the cell-density sensing molecules, such as acyl-HSLs, peptides, which surround the bacteria. However, molecular modules comprising at least of two molecular parts, one with binding affinity to cell-density signals (i.e. HSL, peptide) and another being a therapeutic compound such as photosensitizers, have never been shown. The present invention describes such molecular modules that can be used for targeting of photosensitizers into focal diseases. In addition, molecules with binding affinity to HSL may serve as probes for detection of new acyl-HSLs as the cell density signals.
BRIEF SUMMARY AND OBJECTS OF THE INVENTION
It is an object of the present invention to provide molecular modules that are capable of targeting antimicrobial chemotherapeutics to areas of focal bacterial infections.
It is another object of the present invention to target antimicrobial chemotherapeutics to extracellular signal molecules synthesized by bacteria instead of bacterial cell surfaces.
Yet another object of the present invention is to provide molecular modules capable of binding to HSL, the common moiety of all acyl-HSLs (AI-1 family members), so that it will lead to inactivation of a broad spectrum of gram-negative bacteria.
It is a further object of the present invention to provide molecular modules targeting chemotherapeutics to species-specific peptides secreted by gram-positive bacteria.
It is a further object of the present invention to provide molecular probes targeting chemotherapeutics to cell density sensors of both gram-negative and gram-positive bacteria (AI-2 family members), so that it will be lead to inactivation (inhibition) of a broad

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Molecular probes for targeting of cell density-indicating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Molecular probes for targeting of cell density-indicating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molecular probes for targeting of cell density-indicating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2893346

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.