Molecular modeling for metalloproteins

Data processing: structural design – modeling – simulation – and em – Simulating nonelectrical device or system – Chemical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S022000, C702S027000, C703S011000

Reexamination Certificate

active

07664625

ABSTRACT:
A method for designing a metal ion for use in a molecular dynamics simulation can include the steps of building a metal ion molecule having a center atom and a dummy atom, assigning a van der Waals radius to the center atom, and assigning a charge to the dummy atom. A metal ion molecule may have the center atom covalently linked to one or more dummy atoms resulting in the metal ion molecule having a polyhedron geometry. New force field parameters may be used in methods for designing metal ions for use in molecular dynamics simulations.

REFERENCES:
patent: 5553004 (1996-09-01), Gronbech-Jensen et al.
Chrysina et al. Crystal structures of apo- and holo-bovine a-Lactalbumin at 2.2A resolution reveal an effect of calcium on inter-lobe interactions. The Journal of Biological Chemistry. vol. 275, No. 47, 2000, pp. 37021-37029.
Haeffner et al. Force field parameterization of copper(I)—olefin systems from density functional calculations. Journal of Molecular Structure (Theochem) vol. 297, 1997, pp. 39-50.
Huheey et al. Inorganic Chemistry, Fourth Edition. Harper Collins College Publishers. 1993. pp. 290-292, 397-399, 401-403, and 408-413.
Marchi et al. Solvation and ionisation of alkali metals in liquid ammonia: a path integral Monte Carlo study. Journal of Physics: Condensed Matter. vol. 2, 1990, pp. 5833-5848.
Crawford. CH186 Lecture Presentation: Transition Metal/Coordination Chemistry. Slide 39 out of 60. Accessed [online] on Jan. 5, 2007 at < http://chemistry.semo.edu/crawford/ch186/lectures/ch20/index.html > last modified on Feb. 25, 1999.
Maggiora. Electronic structure of porphyrins. All valence electron self-consistent field molecular orbital calculations of free base, magnesium, and aquomagnesium pophines. Journal of the American Chemcial Society, 1973, vol. 95, pp. 6555-6559.
Zumdahl SS. Chemistry. Lexington, MA: D.C. Heath and Company, 1986, pp. 42-44 and 279-280.
Andriotis et al. Tight-binding molecular dynamics study of transition metal carbide clusters. Chemical Physical Letters, vol. 301, Mar. 5, 1999, pp. 503-508.
Stote et al. Zinc binding in proteins and solution: A simple but accurate nonbonded representation. Proteins: Structure, Function, and Genetics, 1995, vol. 23, pp. 12-31.
Clemmer et al. Physical and chemical evidence for metallofullerenes with metal atoms as part of the cage. Nature. vol. 372, 1994, pp. 248-250.
Barnett et al. J. Cryst. Mol. Struct. 1972, vol. 2, p. 271-279.
Schlatholter et al. Collisions of Oq+ with neutral C60: charge transfer and fragmentation. J. Phys B. At. Mol. Opt. Phys. vol. 31, 1998, pp. 1321-1331.
Niobium element facts. Obtained online on May 31, 2009 from chemicool.com/elements
iobium.html.
Alberts et al.,Protein Science, 1998, 7:1700-1716.
Allinger et al.,J. Mol. Struct.(Theochem), 1994, 69-83.
Mercandelli P., et al.,J. Am. Chem. Soc.1996, 118:11548-11554.
Stote et al.,Proteins, 1995, 23:12-31.
Cornell et al. “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,”J. Am. Chem. Soc., 117: 5179-5197 (1995).
“Lennard Jones Potential,” [http://en.wikipedia.org/wiki/Lennard—jones—potential], Printed on Jul. 10, 2008.
Aqvist et al.,J. Am. Chem. Soc., 1990, 112(8):2860-2868.
Atassi et al.,Critical Reviews in Immunology, 1999, 19(3):219-260.
Boehm et al.,Biochem. Biophys. Res. Commun., 1998, 252:190-194.
Braga et al.,Chem. Commun., 1996, N5:571-578.
Charifson et al.,J. Computational Chem., 1991, 12(7):899-908.
Cieplak et al.,J. Comp. Chem., 1995, 16(11):1357-1377.
Cornell et al.,J. Am. Chem. Soc., 1995, 117(19):5179-5197.
El Yazal et al.,J. Phys. Chem. B, 1999, 103:8773-8779.
El Yazal et al.,J. Phys. Chem. B, 2000, 104:6662-6667.
Guilbaud et al.,J. Phys. Chem., 1993, 97:5685-5692.
Hanahan et al.,Cell1996, 86(3):353-364.
Hoops et al.,J. Am. Chem. Soc., 1991, 113(22):8262-8270.
Klimpel et al.,Mol. Microbiol., 1994, 13(6):1093-1100.
Lu et al.,Proteins, 1998, 33:119-134.
Mackay et al.,Trends Biochem. Sci., 1998, 23:1-4.
Pang et al.,J. Am. Chem. Soc., 1999, 121(8):1717-1725.
Pang,J. Mol. Model., 1999, 5:196-202.
Roe et al.,J. Mol. Model., 1999, 5:134-140.
Ryde,Proteins, 1995, 21:40-56.
Santos et al.,Clin. Exp. Metastasis, 1997, 15:499-508.
Schneider et al., Pure & Appl. Chem., 1993, 65(11):2329-2334.
Shalinsky et al.,Annals of Oncology, 1998, 9(2):73, Abstract No. 278.
Shalinsky et al.,Clin. Cancer Res., 1999, 5(7):1905-1917.
Sivaraja et al.,J. Am. Chem. Soc., 1992, 114(9600-9603.
Vanhooke et al.,Biochem., 1996, 35(19):6020-6025.
Vedani et al.,J. Am. Chem. Soc., 1990, 112(12):4759-4767.
Vu et al.,Cell, 1998, 93(3):411-422.
Wasserman et al.,Proteins, 1996, 24(2):227-237.
Zahn et al.,J. Am. Chem. Soc., 1999, 121(32):7279-7282.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Molecular modeling for metalloproteins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Molecular modeling for metalloproteins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molecular modeling for metalloproteins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4160678

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.