Molecular farming

Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or... – Nonplant protein is expressed from the polynucleotide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S298000, C800S306000, C800S317300, C435S419000

Reexamination Certificate

active

06774283

ABSTRACT:

BACKGROUND OF THE,INVENTION
1. Field of the Invention
An extensive literature has been developed demonstrating the ability to produce polypeptide sequences in a wide variety of cellular hosts. Numerous genes have been isolated from mammals and viruses, joined to transcriptional and translational initiation and termination regulatory signals from a source other than the structural gene and introduced into hosts in which the regulatory signals are functional. Frequently, the peptide of interest is prepared to be used for a physiological purpose. In many situations, physiological activity requires not only having the correct or substantially correct amino acid sequence, but the peptide must fold properly including proper disulfide linkage formation and may require further processing, such as acetylation, glycosylation or methylation.
For economic production, one would wish to use unicellular microorganisms, which could be grown in large fermentation tanks, do not have fastidious nutrient requirements and are relatively economical to maintain. Bacteria, such as
E. coli, B. subtilis
, or the like, fungi, such as yeast, Candida, filamentous fungi, or the like, offer economic opportunities to produce a wide variety of peptides. However, because of the substantial difference in the nature of the unicellular microorganisms and mammalian cells, the folding and processing in a mammalian cell appears to be substantially different from these lower order organisms. Therefore, the products which are obtained from the unicellular microorganisms may not have been properly processed or folded so as to realize a substantial proportion or all of the physiological activity of the naturally occurring peptide obtained from a native host.
There therefore remains substantial interest in providing alternative economic systems for producing peptides, where high yields may be obtained and significantly, the products may be produced in a form providing for a high degree of physiological activity common to the wild-type peptide having the same or substantially the same amino acid sequence.
2. Brief Description of the Relevant Literature
References concerned with expression of various interferons include Goeddel et al.,
Nucleic Acids Res
. (1980) 8:4057-4074; Goeddel,
Nature
(1980) 287:411-415; Yelverton et al.,
Nucleic Acids Res
. (1981) 9:731-741; Gray et al.,
Nature
(1982) 295:503-508; Devos et al.,
Nucleic Acids Res
. (1982) 10:2487-2501; Grey and Goeddel,
Proc. Natl. Acad. Sci. USA
(1983) 80:5842-5846; Scahill et al.,
Proc. Natl. Acad. Sci. USA
(1983) 80:4654-4658. See also, Horsch et al.,
Science
(1985) 227:1229-1231.
Wide host range cloning vectors are described by Knauf and Nester,
Plasmid
(1982) 8:45-54. The nucleotide sequence of the T-DNA region is described by Barker et al.,
Plant Molecular Biology
(1983). 2:335-350. See also, EPA 0 116 718 and PCT WO84/02913.
SUMMARY OF THE INVENTION
Efficient production of physiologically active mammalian proteins is provided by introducing functional constructs containing the mammalian structural gene into a plant cell. The construct is able to express the desired peptide in an isolatable form. The plant cells may be grown in culture or cultivated in an appropriate nutrient medium or soil and the mammalian protein harvested. Particularly, T-DNA transformation may be employed for integration of the construct into the plant genome under conditions where the cells can be used to produce plants.
DESCRIPTION OF THE SPECIFIC EMBODIMENTS
Novel DNA sequences are provided comprising constructs functional in plant cells for the expression of physiologically active mammalian peptides. The constructs provide for functional transcriptional and translational initiation and termination regulatory signals which with the construct integrated into the plant genome, provide for efficient expression of the structural gene. Depending upon whether the cells are grown in culture or cultivated in soil or other medium, these cells or plants may be harvested, and the desired product extracted and purified in accordance with conventional techniques.
The construct for introduction into the plant will be considered first. While the construct may be either DNA or RNA, for the most part, the construct will be DNA even though the construct may be ultimately introduced into the plant cell as RNA, such as a virus. One significant element of the construct will be the transcriptional cassette involving the transcriptional initiation region, which may be divided into a regulatory domain and the usually proximal RNA polymerase binding domain, the structural gene coding for the mammalian peptide of interest, and a terminator region which provides for termination of transcription and translation. Another significant element is the regulation of expression at a particular stage of differentiation, in a particular plant part, e.g., roots, leaves, stalk, or the like. In many situations a polypeptide leader signal will be desirable which directs the product to a particular organelle. This will be of substantial significance where the organelle may be involved in the proper processing of the peptide.
A wide variety of transcriptional initiation regions may be employed, which are inducible, e.g., tissue specific, or constitutive. The transcriptional initiation regions may come from the tumor-inducing plasmids of Agrobacterium, particularly the genes associated with T-DNA, or from viruses, or plants. Among the T-DNA transcription initiation regions which may find use include those regions associated with octopine synthase, nopaline synthase, mannopine synthase, transcript 7, and the like. Among viral transcription initiation regions are included the caulimovirus full length promoter and the region VI promoter. Among plant transcription initiation regions are the ribulose-1,5-bisphosphate carboxylase small subunit region, which is light inducible, or the napin or other seed protein region, for formation in seed.
The transcription initiation regions may be isolated from their natural sites in a host or may be sequenced and synthesized so as to have the same or substantially the same sequence as the wild-type region. Where inducible regulation is desired, domains may be obtained from different sources, so that a regulatory domain may be obtained from one source and joined to an RNA polymerase binding domain from a different source. In this manner, one may provide for the use of strong RNA polymerase binding domain associated with one structural gene, while having a regulatory domain associated with a different structural gene. These hybrid regulatory regions may find particular use where one wishes to induce the production of the desired gene at a particular phase in the growth of the plant or to have the product located in a particular plant part, such as seed, leaves, or the like. Any transcriptional termination regulatory region may be used which is functional in plants, e.g., prokaryotic or eukaryotic, from T-DNA, plants, viruses or mammals.
The structural gene may be any mammalian gene of interest, which includes mammalian viral pathogen genes. A wide variety of genes have been isolated and shown to be capable of production in unicellular micro-organisms, to various degrees of biological activity and efficiencies, and in mammalian cells, with the ever present concern that the mammalian cells are transformed cells, so that any product must be carefully purified to ensure the complete absence of any nucleic acid contaminant. Structural genes of interest include &agr;-, &bgr;- and &ggr;-interferons, immunoglobulins, with the structural genes coding for the light and heavy chains and desirably assembly occurring in the plant cell, lympho-kines, such as interleukins 1, 2 and 3, growth factors, including insulin-like growth factor, epidermal growth factor, platelet derived growth factor, transforming growth factor-&agr;, -&bgr;, etc., growth hormone, insulin, collagen plasminogen activator, blood factors, such as factors I to XII, histocompatibility antigens, enzymes, or other mammalian pro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Molecular farming does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Molecular farming, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molecular farming will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3357962

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.