Stock material or miscellaneous articles – Composite – Of inorganic material
Reexamination Certificate
1999-05-10
2002-03-12
Kelly, Cynthia H. (Department: 1774)
Stock material or miscellaneous articles
Composite
Of inorganic material
C428S917000, C428S704000, C313S504000, C313S506000, C549S001000, C549S029000, C549S041000, C549S080000, C526S256000
Reexamination Certificate
active
06355365
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a new functional molecular compound which can be used in the chemical industry and the electrical industry, and an application technique thereof as a luminous material and a luminous element.
2. Description of the Prior Art
An organic electro luminescence (EL) device using a functional organic material was suggested in the past. Since then, various materials have been developed for the purpose of improving the luminous efficiency of the organic electro luminescence device, controlling its luminous color, and the like. These techniques are described in, for example, J. Appl. Phys. 65, 3610 (1989), W. Tang, S. A. Van Slyke, and C. H. Chen.
However, the performance of organic EL devices using materials which have been developed up to the present is insufficient for practical use. The main reason for it is that it is difficult to cope with both of control of the luminous color by a molecular compound (any one of low molecular compounds, oligomers and polymers) constituting a functional organic compound and effective luminescence having a high brightness by using the molecular compound. In other words, concerning conventional materials, for example, aluminoquinoline low molecular compounds, which are widely used, luminescence having high brightness and efficiency is relatively easy, but the control of their luminous color is difficult. Concerning compounds wherein the conjugation length of their electric system is changed to control their luminous color, such as oligothiophen, it is difficult to realize luminescence having high efficiency and brightness.
In order to overcome these problems, new compounds wherein an oligothiophen segment is combined with a triphenylamine segment are also suggested (Lecture Proceeding I, p129, 1998, The Japan Chemical Society, 74th, Annual Convention in spring, Tetsuya Noda, Hiromitsu Ogawa, Naoki Noma, and Yasuhiko Shirota). However, these compounds do not satisfactorily overcome the problems.
These situations are described in, for example, Handbook of Organic Conductive Molecules and Polymers, S. Hotta, (Ed. H. S. Nalwa), Chichester, 1997, Vol. 2, Chapter 8, John Wiley & Sons, and Lecture Proceeding I, p129, 1998, The Japan Chemical Society, 74th, Annual Convention in spring, Katsuyuki Ogura, Motohiro Akazome, Tetsu Tanaka and Tatsuo Fukuda.
SUMMARY OF THE INVENTION
An object of the present invention is to provide molecular compounds making it possible to control their luminous color relatively easily and realize highly efficient and bright luminescence; and luminous materials using a series of molecular compounds.
The present invention provides a series of molecular compounds making it possible to overcome the above-mentioned problems, and cope with both of control of their luminous color and realization of highly efficient and bright luminescence; and luminous materials using a series of molecular compound. These molecular compounds include entirely new compounds and compounds which have already been known but whose effect of coping with both of the control of their luminous color and highly efficient and bright luminescence has not been recognized up to the present.
The feature of all molecular compounds according to the present invention is in that their thiophene ring and benzene ring are directly bonded to each other. Their luminous color can easily be controlled by changing the number of these rings and the bonding order of these rings. Consequently, these molecular compounds are used to make it possible to realize luminescence having wide colors from violet to red highly efficiently and brightly. This effect is based on the fact that the conjugation length of the electric system in these compounds can be changed at will.
The feature of another kind of molecular compounds according to the present invention is in that their thiophene ring and naphthalene ring are directly bonded to each other. Their luminous color can easily be controlled by changing the number of these rings and the bonding order of these rings. Consequently, these molecular compounds are used to make it possible to realize luminescence having wide luminous colors highly efficiently and brightly in the same way as the molecular compounds comprising a thiophene ring and a benzene ring. This effect is also based on the fact that the conjugation length or the electronic system in these compounds can be changed at will.
A first aspect of the present invention is a molecular compound having the following molecular structure:
wherein R1 and R2 each independently represents any one of hydrogen, an alkyl group, an alkenyl group and a halogen; and m1, m2 and n are 1 or more provided that when n is 1 or 2, at least one of m1 and m2 is 2 or more, and when n is 3 or more, m1 and m2 are 1 or more. The molecular compound has the effect of realizing a luminous material which emits light having a very high brightness and in which its color changes variously in accordance with the number of m1, m2 and n.
A second aspect of the present invention is a molecular compound having the following molecular structure:
wherein R1 and R2 each independently represents any one of hydrogen, an alkyl group, an alkenyl group and a halogen; and m1, m2 and n are 1 or more provided that when n is 1 or 2, at least one of m1 and m2 is 2 or more, and when n is 3 or more, m1 and m2 are 1 or more. The molecular compound has the effect of realizing a luminous material which emits light having a very high brightness and in which its color changes variously in accordance with the number of m1, m2 and n.
A third aspect of the present invention is a molecular compound having the following molecular structure:
wherein R1 and R2 each independently represents any one of hydrogen, an alkyl group, an alkenyl group and a halogen; and n and m are 1 or more. The molecular compound has the effect of realizing a luminous material which emits light having a far higher brightness by alternate arrangemnent of the thiophen rings and the benzene rings, and in which its color changes variously in accordance with the number of in and n.
A forth aspect of the present invention is a molecular compound having the following molecular structure:
wherein R1 and R2 each independently represents any one of hydrogen, an alkyl group, an alkenyl group and a halogen; and/or more. The molecular compound has the effect of realizing a luminous material which emits light having a far higher brightness by alternate arrangement of the thiophene rings and the benzene rings, and in which its color changes variously in accordance with the number of m and n.
A fifth aspect of the present invention is a molecular compound having the following molecular structure:
wherein R1 and R2 each independently represents any one of hydrogen, an alkyl group, an alkenyl group and a halogen; and n is 2 or more. The molecular compound has the effect of realizing a luminous material which emits light having a far higher brightness by alternate arrangement of the thiophene rings and the benzene rings, and in which its color changes variously in accordance with the number of n.
A sixth aspect of the present invention is a molecular compound having the following molecular structure:
wherein R1 and R2 each independently represents any one of hydrogen, an alkyl group, an alkenyl group and a halogen; and at least one of n and m is 2 or more. The molecular compound has the effect of realizing a luminous material which emits light having a very high brightness, and in which its color changes variously in accordance with the number of m and n.
A seventh aspect of the present invention is a luminous material comprising a molecular compound having a molecular structure wherein a thiophene ring and a benzene ring are directly bonded to each other. This material has the effect of giving luminous color having a high brightness.
An eighth aspect of the present invention is a luminous material according to the seventh aspect, wherein the number of the thiopheraring and the benzene ring and the bond
Hotta Shu
Tamaki Takashi
Browdy and Neimark
Japan Chemical Innovation Institute
Kelly Cynthia H.
Xu Ling
LandOfFree
Molecular compound, luminous material using the same, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Molecular compound, luminous material using the same, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molecular compound, luminous material using the same, and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2840170