Plastic and nonmetallic article shaping or treating: processes – Optical article shaping or treating – Optical fiber – waveguide – or preform
Reexamination Certificate
2000-08-09
2003-12-09
Vargot, Mathieu D. (Department: 1732)
Plastic and nonmetallic article shaping or treating: processes
Optical article shaping or treating
Optical fiber, waveguide, or preform
C264S496000, C264S621000, C264S260000
Reexamination Certificate
active
06660192
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to microprocesses at surfaces, and more particularly to the formation of micropatterned articles such as waveguides, sensors, and switches on substrates from fluid precursors, and mechanisms for micro-scale positioning of biologically active agents at predetermined regions of a surface.
BACKGROUND OF THE INVENTION
In the fields of chemistry, biology, materials science, microelectronics, and optics, the development of devices that are small relative to the state of the art and conveniently and relatively inexpensively reproduced is important.
A well-known method of production of devices, especially in the area of microelectronics, is photolithography. According to this technique, a negative or positive resist (photoresist) is coated onto an exposed surface of an article. The resist then is irradiated in a predetermined pattern, and portions of the resist that are irradiated (positive resist) or nonirradiated (negative resist) are removed from the surface to produce a predetermined pattern of resist on the surface. This is followed by one or more procedures. According to one, the resist may serve as a mask in an etching process in which areas of the material not covered by the resist are chemically removed, followed by removal of resist to expose a predetermined pattern of a conducting, insulating, or semiconducting material. According to another, the patterned surface is exposed to a plating medium or to metal deposition (for example under vacuum) followed by removal of resist, resulting in a predetermined plated pattern on the surface of the material. In addition to photolithography, x-ray and electron-beam lithography have found analogous use.
In an article entitled “Materials for Optical Data Storage”, by Emmelius, et al.,
Angewandte Chemie, Int. Ed
. (
English
), 28, 11, 1445-1600 (November, 1989), a review of methods of making CD/ROM, WORM, and EDRAW optical storage disks is presented. According to one method, photolithography is used to create a pattern of protrusions on a surface that can serve as a master for fabrication of articles that have a surface including a series of ridges and protrusions complementary to the photolithographically-produced master. These articles, including microridges and grooves at one surface, can be combined with other materials in a layered structure to form an optical storage device. An article in the Phillips Technical Review, volume 40, number 10 (1982), entitled “Manufacture of LaserVision Video Disks by a Photopolymerization Process”, by Haverkorn, et al., discusses similar technology. U.S. Pat. Nos. 5,170,461 (Yoon, et al.), U.S. Pat. No. 4,959,252 (Bonnebat, et al.) and U.S. Pat. No. 5,141,785 (Yoshinada, et al.) describe optical elements such as waveguides and optical recording media. Yoshinada, et al. describe a process involving coating a substrate with a polymer or prepolymer, pressing a contoured stamp into the polymer or prepolymer to create a contoured pattern in a surface of the polymer or prepolymer complementary to the contoured surface of the stamp, removing the stamp, and adding a reflective layer to the contoured surface of the polymer or prepolymer for use as an optical device.
Photolithographic techniques for fabricating surfaces with positional control of chemical functionalities at submicron resolution is described in an article entitled “Patterning of Self-Assembled Films Using Lithographic Exposure Tools”, by Dressick, et al.,
Jpn. J. Appl. Phys
., 32, 5829-5839 (December, 1993). The technique involves exposure of a self-assembled film to deep UV irradiation through a mask. According to one technique, photochemical cleavage of an organic group occurs in exposed regions followed by chemical reactivity selectively at those regions.
Photolithography has found application in the biological arena as well. Sundberg, et al. describe a method for patterning receptors, antibodies, and other macromolecules at precise locations on solid substrates using photolithographic techniques in combination with avidin or streptavidin/biotin interaction in an article entitled “Spatially-Addressable Immobilization of Macromolecules on Solid Supports”,
J. Am. Chem. Soc
., 117, 12050-12057 (1995).
Reactive ion etching is a process that is useful in the semiconductor industry and other arenas for forming very small structures having a very high aspect ratio (a very high height/width ratio of features). Reactive ion etching is a dry process in which a gas is accelerated towards a surface to effect etching, in contrast to wet etching processes in which a liquid is simply allowed to contact certain regions of a surface and to chemically react at those regions. In wet etching processes, etching typically takes place not only in a direction perpendicular to the surface, but horizontally, as well. That is, with wet etching it can be difficult to etch relatively precise, vertical channels in a surface. Instead, the sidewalls of the channel are etched horizontally also. Reactive ion etching provides an advantageous alternative for etching channels with good, near-vertical sidewalls.
Reactive ion etching masks should have certain characteristics such as good hardness, inertness to the etchent species, and in many cases electrical insulating properties. Thus, materials suitable for reactive ion etching masks are limited. Many metal masks, such as gold masks, are unsuitable since the metals can sputter easily. Polymeric masks typically degrade under reactive ion etching conditions. A typical prior art reactive ion etching mask is made of silica and is formed by creating a layer of silica on a surface and etching the layer selectively to create a silica mask, using photolithography. Such procedures can be costly. In an article entitled “Poly(siloxane)-based Chemically Amplified Resist Convertable into Silica Glass”, by Ito, et al.,
Jpn. J. Appl. Phys
., 32, 6052-6058 (1993), a poly(siloxane)-based chemically amplified resist is reported. A polymeric glass precursor is converted into silicate glass through a lithographic procedure.
Waveguides are generally defined by a core, surrounded by a cladding, that acts as a guide of electromagnetic radiation. The waveguide can propagate radiation via total internal reflection of the radiation within the core. Waveguides have served as important components of sensors and switches, and have been fabricated from a variety of materials including inorganic materials such as glasses and organic materials such as polymers. Polymeric waveguides have been fabricated using reactive ion etching, ultraviolet (UV) laser and electron-beam writing, induced dopant diffusion during polymerization (photo-locking and selective polymerization), selective poling of electro-optically active molecules induced by an electric field, and polymerization of self-assembled prepolymers. One common technique for forming polymeric waveguides is injection molding. For example, voids in a cladding material (or substrate) can be filled, via injection molding, with a core material. However, problems associated with this technique include softening and deformation of the cladding or substrate under temperatures required for injection molding. Fabrication with precision is compromised, typically. In an additional prior art technique, a polymeric film is spun onto a substrate and portions of the film are subsequently exposed to light by a photolithographic process, thereby changing the refractive index of a polymeric film and creating a waveguide in the film. This technique requires expensive and complicated photolithographic systems for base formation of the waveguide array, and subsequent multi-step processing is required such as removal of the polymeric film from the substrate, lamination processing, curing processing, and other processing steps.
U.S. Pat. No. 5,136,678 (Yoshimura) describe fabrication of an optical waveguide array by providing a clad substrate having a number of grooves arranged in lines on a surface of the substrate, the substrate being resistant to a UV-curable
Jackman Rebecca J.
Kim Enoch
Marzolin Christian
Mrksich Milan
Prentiss Mara G.
Vargot Mathieu D.
Wolf Greenfield & Sacks P.C.
LandOfFree
Molded waveguides does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Molded waveguides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molded waveguides will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3152422