Molded electronic package, method of preparation and method...

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S762000, C361S763000, C361S779000, C174S050510, C174S255000, C174S256000, C174S257000, C174S260000, C439S066000, C439S068000, C428S901000, C165S185000

Reexamination Certificate

active

06519161

ABSTRACT:

TECHNICAL FIELD
This invention relates to the construction of a packaged electronic circuit comprising a molded-plastic support base having a capacity to accept and hold electronic devices or subassemblies thereof in a pocket within the molded substrate, and positioning them for interconnection (hereinafter referred to as “Molded Electronic Package”). The connection to the electronic devices or subassemblies is intricately formed with the placement of the circuit traces on the substrate. This is an advantage over existing technology because it offers savings both in cost and space. This is usually done at the surface level. The formation of the circuit traces by printing with Polymer Thick Film and the attachment to electronic devices is achieved by Polymer Thick Film printing technology and the substrate is formed with plastic molding technology. The electronic devices may be semiconductors, integrated circuits, electromechancial devices, other active components, passive components such as Thick Film resistors or capacitors, or other devices as defined later. While molded substrates are not new, and the use of Polymer Thick Films technology and Thick Film Technology are not new, the combination of a molded substrate with a pocket built into the molded substrate and interconnecting the electronic devices in the pocket with Polymer Thick Film technology is new and fulfills a long-felt need to be able to reserve the surface area above the trace area for other circuits traces and electronic devices. Others have tried to accomplish this by other means of interconnecting by layering circuit boards as discussed below, but only with the advent of the new Polymer Thick Films and the new molded plastic resins which have only recently become available can we now accomplish the connecting of the electronic device in the pocket of the substrate material. The pocket permits the electronic device to be supported by the substrate instead of being supported on the trace which allows for the use of the new Polymer Thick Film technology to connect the electronic devices which previously did not exist. This long felt need to further reduce the size of circuit boards for ever smaller products while containing or reducing costs of the resulting circuits has until now been unanswered by conventional methods.
BACKGROUND ART
A traditional printed circuit board comprises a supporting substrate and copper-foil circuit traces. These traces are usually formed by the chemical etching of a pattern defined onto a laminated copper surface. Sometimes both front and back sides of the substrate carry circuit traces. Two-sided, or double-sided designs usually are interconnected through vias (holes) that have copper deposited around the hole walls. A related technology exists known as Thick Film. Here the supporting substrate comprises flat, thin pieces of alumina (Al
2
O
3
) on which the traces are printed with an ink containing metal, glass frit, and other additives. When fired at the correct temperatures the ink fuses to form conductive traces to which components can be soldered. An important feature to Thick Film technology is that conductive traces can be interconnected by printed inks having specific electrical resistivity after being heated in a kiln (firing).
A lessor-known technology exists known as “Polymer Thick Film” wherein conductive traces can be prepared on printed circuit board substrate using polymer inks that contain polymer resins and metals, usually silver. Typically heat is used to cure or set the polymers in the inks to form reasonably stable circuit traces. In a manner similar to the Thick Film process, carbon-filled inks can be used to interconnect circuit traces with specific electrical resistances. Carbon prints, known as Polymer Thick Film resistors, can be printed onto traditional copper foil traces, or onto printed Polymer Thick Film conductive circuit traces.
Countless variations of printed circuit boards exist, and many variations of the Polymer Thick Film process also exist. One application of both the printed circuit board process and the Polymer Thick Film process is the Molded Circuit board. Here the process of converting a laminated sheet of material into the proper circuit board dimensions and having all the necessary holes, slots, and shapes are replaced by molding these features into the board. Circuit traces are applied to a board either during or after the molding process. One method for adding the traces was to print them with conductive Polymer Thick Film inks.
In the past the molded board with Polymer Thick Film traces (baking of the Polymer Thick Film ink creates the conductive circuit traces) found limited acceptance for a number of reasons. Printed Polymer Thick Film conductive traces have more resistance than copper foil traces. Also, electronic devices cannot be soldered to most Polymer Thick Film traces. Those electronic devices that were attached to solderable Polymer Thick Film inks did not have good adhesion to the molded substrate after the soldering process. Some Polymer Thick Film conductive inks contain lead which causes environmental concerns and which limits the ability to recycle the materials. Additionally, the molded plastic that could withstand soldering temperatures without warping were the engineering grade materials which are higher quality performing materials. These are more expensive, however, and when used, the cost advantage of the molding process is often lost. Some simple applications of the Molded Board with Polymer Thick Film traces (but without pockets) designed to fit into a connector have been used commercially, but in general commercial production of this type product has been limited.
Printing conductive layers over circuit board traces that are connected to and grounded by a ground plane is a known way to achieve shielding of the traces covered. The circuit traces are first sealed in an insulating layer, and then overprinted with a conductive layer. With this traditional approach it is not possible to shield the components which are attached to the circuit traces, but only the traces themselves.
Lassen's U.S. Pat. No. 4,602,318 describes achieving high density electronic networks by depositing filaments onto a substrate and encapsulating the filaments to achieve dimensional stability. Filaments are conductive or made conductive by various means. Access to these conductive traces is produced with the use of a high energy beam to cut through and expose the filaments. Lassen claims the use of epoxy resin sheets, and polyimide resin sheets to create his circuitry.
Parker's U.S. Pat. No. 4,912,844 describes using a heated punch to define grooves and holes in a substrate. The grooves are then filled with solder to create a circuit trace which connects electronic devices. Beaman's U.S. Pat. No. 5,371,654 describes a three dimensional electronic package with a plurality of assemblies interconnected by aligning the assemblies so they are adjacent, and interconnected by some means such as an elastomeric material, but other than a Polymer Thick Film.
Capote's U.S. Pat. No. 5,376,403 describes ink formulations which can be used to form circuit traces, but Capote does not describe or claim uses for his ink.
Hiller's U.S. Pat. No. 5,420,755 places a component in a hole cut into standard circuit board material, but does not claim using molded pockets in circuit boards. The component is attached with a standard solder connection. Placement of the component is in a cut hole and the solder joint is not different from using any common commercial solder joint to connect the electronic devices.
McGinley's U.S. Pat. Nos. 5,599,595 and 5,688,146 describes how circuit traces can be added to molded plastic to achieve a printed connector assembly. McGinley uses current technology to attach printed Polymer Thick Film conductive traces to the top surface of the Polymer Thick Film traces. McGinley uses current Polymer Thick Film methods to print resistors on the circuitry of the connector.
Marrocco's U.S. Pat. Nos. 5,646,231,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Molded electronic package, method of preparation and method... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Molded electronic package, method of preparation and method..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molded electronic package, method of preparation and method... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3142804

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.