Fabric (woven – knitted – or nonwoven textile or cloth – etc.) – Scrim – Woven scrim
Reexamination Certificate
2000-08-14
2002-09-10
Michl, Paul R. (Department: 1714)
Fabric (woven, knitted, or nonwoven textile or cloth, etc.)
Scrim
Woven scrim
C442S056000, C442S221000, C442S315000, C524S507000
Reexamination Certificate
active
06448193
ABSTRACT:
BACKGROUND OF THE INVENTION
(i) Field of the Invention
The invention relates to a moisture-crosslinkable polyurethane adhesive, to a process for adhesively bonding a textile and a cellular material by means of the adhesive and to the adhesively bonded assemblies thus obtained.
(ii) Description of the Related Art
The adhesive bonding of a textile and of a cellular material is generally carried out by flame brushing. Flame brushing consists in modifying the surface condition of the material by a flame treatment, in order to render it capable of adhesive bonding.
The adhesive bonding of textiles to films of a cellular material, such as a foam, is carried out industrially on a production line comprising the successive stages of flame brushing the foam, of placing the textile on the foam, and of calendering and of winding off the final adhesively bonded assembly.
This technique exhibits the following disadvantages:
part of the foam is destroyed during the flame treatment,
the use of the flame makes the process dangerous from the view point of the risk of fire, on the one hand, and of the possible production of gases which are harmful to the users and to the environment, on the other hand,
the production rate is limited to 50 meters per minute,
it is difficult to control the flame brushing of thin films, which does not allow the formation of adhesively bonded assemblies of low thickness,
polyurethane foams cannot be treated according to this technique,
and, finally, the flame brushing stiffens the surface of the foam, which makes the textile surface of the assembly hard to the touch.
It has now been found that it is possible to overcome the abovementioned disadvantages by carrying out the adhesive bonding of the textile to the cellular material by means of a novel adhesive, which adhesive is preferably deposited on the textile.
The invention thus relates to a moisture-crosslinkable polyurethane adhesive which comprises:
a) 70 to 95% by weight of a polyurethane prepolymer obtained by polyaddition of at least one polyol to at least one polyisocyanate and,
b) 5 to 30% by weight of an essentially amorphous poly-&agr;-olefin, the content of free NCO groups representing 1 to 20% by weight of the adhesive.
The moisture-crosslinkable polyurethane adhesive preferably comprises:
a) 85 to 95% by weight of a polyurethane prepolymer obtained by polyaddition of at least one polyol to at least one polyisocyanate and,
b) 5 to 15% by weight of an essentially amorphous polyolefin, the content of free NCO groups representing 1 to 10% by weight of the adhesive.
The polyol participating in the formation of the prepolymer is generally chosen from polyether polyols, polyester polyols and unsaturated polyols.
The polyether polyols are generally chosen from aliphatic and aromatic polyether polyols and mixtures of these compounds. Their average molecular mass is preferably between 200 and 9000 and their hydroxyl functionality is preferably between 2 and 4.6.
Mention may be made, as examples of aliphatic polyether polyols, of oxyalkylated derivatives of diols, such as polypropylene glycols, or of triols, such as glycerol, trimethylolpropane and hexane-1,2,6-triol, polymers of ethylene, propylene or butylene oxide, copolymers of ethylene oxide and of propylene oxide, the abovementioned compounds containing silanyl endings, and oxyalkylated diphenyl derivatives, such as derivatives oxyethylenated or oxypropylenated in the 4,4′-position of diphenylmethane.
Use is preferably made of oxypropylated derivatives of glycerol, polymers of propylene or butylene oxide, and copolymers of ethylene oxide and of propylene oxide.
The polyester polyols are generally chosen from aliphatic and aromatic polyester polyols and mixtures of these compounds. Their average molecular mass is preferably between 250 and 7000 and their hydroxyl functionality is preferably between 2 and 3.
Mention may be made, by way of examples, of the polyester polyols resulting from the condensation of aliphatic, cyclic or aromatic polyols, such as ethanediol, 1,2-propanediol, 1,3-propanediol, glycerol, trimethylolpropane, 1,6-hexanediol, 1,2,6-hexanetriol, butenediol, sucrose, glucose, sorbitol, pentaerythritol, mannitol, triethanolamine, N-methyldimethanolamine and mixtures of these compounds, with an acid, such as 1,6-hexanedioic acid, dodecanedioic acid, azelaic acid, sebacic acid, adipic acid, 1,18-octadecanedioic acid, phthalic acid, succinic acid and mixtures of these acids, an unsaturated anhydride, such as maleic or phthalic anhydride, or a lactone, such as caprolactone.
Use is preferably made of the polyester polyols resulting from the condensation of ethanediol, 1,3-propanediol and/or 1,6-hexanediol with adipic acid and/or phthalic acid.
The unsaturated polyols are generally chosen from polyols and mixtures of polyols preferably having a molecular mass of between 1200 and 3000.
Mention may be made, by way of examples, of polybutadiene and polyisoprene containing hydroxylated endings.
The abovementioned polyols are advantageously amorphous.
The abovementioned polyols can also be used as a mixture with other hydroxylated compounds.
It is thus possible to use a monol or a mixture of monols, in particular poly(ethylenelbutylene)monols, such as Kraton Liquid™ L-1203 Polymer, sold by Shell, or a polyol or a mixture of polyols chosen from poly(ethylene/butylene)diols, such as Kraton Liquid™ Polymer HPVM-2203, sold by Shell, copolymers of ethylene, of vinyl acetate and of 2-hydroxyethyl acrylate, such as Orevac® 9402, sold by Elf Atochem, indenelcoumarone resins modified by phenol, for example Novares CA120, sold by VFT, and hydroxylated tackifying resins, for example Reagem, sold by DRT.
The abovementioned monol and the abovementioned polyol respectively represent 0 to 10% and 0 to 25% by weight of the polyols.
The polyisocyanate is generally chosen from aliphatic, cycloaliphatic or aromatic polyisocyanates well known to a person skilled in the art and mixtures of these compounds.
Mention may be made, by way of examples of aliphatic polyisocyanates, of hexamethylene diisocyanate (HMDI), ethylene diisocyanate, ethylidene diisocyanate, propylene diisocyanate, butylene diisocyanate, dichlorohexamethylene diisocyanate, furfurylene diisocyanate and mixtures of these compounds.
Mention may be made, by way of examples of cycloaliphatic polyisocyanates, of isophorone diisocyanate (IPDI), cyclopentylene 1,3-diisocyanate, cyclohexylene 1,4-diisocyanate, cyclohexylene 1,2-diisocyanate and mixtures of these compounds.
Mention may be made, by way of examples of aromatic polyisocyanates, of diphenylmethane diisocyanate, in particular 4,4′-diphenylmethane diisocyanate (MDI), 2,4′-diphenylmethane diisocyanate and 2,2′-diphenylmethane diisocyanate, toluene diisocyanate, in particular 2,4-toluene diisocyanate (TDI) and 2,6-toluene diisocyanate, 2,2-diphenylpropane 4,4′-diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, xylene diisocyanate, 1,4-naphthalene diisocyanate, 1,5-naphthylene diisocyanate, azobenzene 4,4′-diisocyanate, diphenyl sulphone 4,4′-diisocyanate, 1-chlorobenzene 2,4-diisocyanate and mixtures of these compounds.
Use is preferably made of diisocyanates and more particularly of MDI, 2,4′-diphenylmethane diisocyanate, 2,2′-diphenylmethane diisocyanate, TDI, 2,6-toluene iisocyanate, HMDI and IPDI.
The polyurethane prepolymer is obtained by polyaddition of at least one polyol and of at least one polyisocyanate in amounts such that the content of isocyanate groups in the prepolymer is between 1 and 25% and preferably 2 and 15% by weight.
The nature of the polyurethane prepolymer is capable of influencing the hardness of the adhesive according to the invention. In this respect, preference is given to the polyurethane prepolymers obtained by reaction:
of a mixture of polyols composed:
of 20 to 100% by weight of an aliphatic polyester polyol,
and of 0 to 80% by weight of an aliphaticlaromatic polyester polyol
and of at least one polyisocyanate.
Preference is more particularly given to the po
Bauduin François
Bouttefort Patrick
Chartrel Jean-François
Miskovic Michel
Atofina
Hunton & Williams
Michl Paul R.
LandOfFree
Moisture-setting polyurethane adhesive does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Moisture-setting polyurethane adhesive, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Moisture-setting polyurethane adhesive will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2900419