Drying and gas or vapor contact with solids – Apparatus – For hollow article
Reexamination Certificate
2000-03-01
2003-11-18
Bennett, Henry (Department: 3749)
Drying and gas or vapor contact with solids
Apparatus
For hollow article
C034S443000
Reexamination Certificate
active
06647639
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to sytems and devices for removing unwanted and harmful moisture from wet and/or water damaged structures.
BACKGROUND OF THE INVENTION
Unwanted water, introduced by flooding, precipitation or otherwise, causes millions, if not billions, of dollars of damage to structures every year. Generally, the amount of damage can be reduced, minimized, or even eliminated if the water can be removed from the structure shortly after its undesired entry into the structure. For example, if the water can be extracted promptly in some manner from the structure generally, and then from the cavities within walls, floors and other structural elements, then rot, mold, rust and other destructive effects of the unwanted water can be minimized or avoided altogether.
Some early attempts to solve this problem involved simply passive drying, such as draining the visible water, and opening windows to let the hidden moisture evaporate. While this had the advantage of being relatively non-intrusive and nondestructive, it also generally took so long that it did not avert rot, mold, rust and the other destructive effects of the lingering moisture. Also, it left the structure relatively unusable for an undesirably long period of time.
Partly in response to those disadvantages, more active approaches were used, such as forcing air, heated or otherwise, through the afflicted structure so as to expedite the evaporation process. While this resulted in some improvement in many cases, generally, the results were still not satisfactory.
Other early attempts involved removal of some or all of certain structural elements to facilitate evaporation from enclosed areas. For example, in some cases floorboards or wallboards were removed to enable the moisture trapped in the wall or floor cavities to evaporate more effectively and sooner. The obvious disadvantage of such approaches is that they were so destructive as to require significant repair and/or replacement of the structure after the drying process, resulting in greater cost and often the loss of use of the structure for a longer period of time than would be the case without the destruction.
To overcome some of the disadvantages of the prior systems, some improved systems were developed. For example, in my prior patent application (application Ser. No. 08/890,141, filed Jul. 9, 1997 now pending,) I developed certain features of a system that dried structures more effectively and less destructively than previous systems. In that system, a blower forced air, either positively or negatively, to dry the afflicted structure. Specifically, in positive pressure mode, the blower would blow dry air through a hose, and into one or more manifolds, and then from the manifolds into a network of smaller tubes, and then into an injector that penetrated through a small hole in the structure. Conversely, when in negative pressure mode, the system would suck the damp air from the structure, out through the hole via the injector, and then through the tubes, the manifold, the hose, and ultimately out back through the blower.
While this system was a significant advance over prior systems, significant problems remained. Some shortcomings of my prior system, and other prior systems, included:
(1) Excessively destructive intrusion. Specifically, the prior system required that a plurality of relatively large sized holes be created in the structure. For example, in a high density material such as wood, a hole of {fraction (7/16)}″ diameter would be required. Holes this large require more effort in repair than would be required with smaller holes. While some prior systems have attempted to utilize smaller holes, the required air injectors were so small that they lacked convenient and effective means for preventing accidental withdrawal without damage to the structure. For example, when an injector was inserted into a wet sheetrock ceiling, the injector would have a tendency to fall out, especially in positive pressure mode. To date, previous attempts to prevent this problem have either not been effective, or have had undesirable side-effects, such as larger holes to accommodate fletching for friction to prevent withdrawal, angled penetration tending to cause damage upon removal, and threads for screwing in the injectors tending to cause a suboptimal amount of labor in the field.
(2) Clogging. In my prior system, the injectors included a small hole near the distal end of the injector tube. The purpose of this extra hole was in part to create extra airflow. However, the hole in the distal end was too close to the end of the injectory and thereby resulted in frequent clogging with wet drywall or other debris or matter within the wall or floor cavity. Because of the small surface area available, it could not be large enough as a single set of holes.
(3) Inefficiency and Expense in Mobilization and Demobilization. Perhaps the biggest problem with prior systems was the relatively large amount of labor required to assemble, reconfigure and disassemble them in the field. Since labor costs for restoration services are relatively high, even modest improvements in field efficiency can be extremely valuable.
(4) Interference with Facilities & Operations. Another disadvantage of my prior system, and all other drying systems of which I am aware, is the signficant intrusion and interference with the structure being dried. That is, as a practical matter, while prior systems are being used to dry a structure, it is nearly impossible for the usual occupants of the premises being dried to conduct business therein. For example, in an office building, the office tenants must generally not return until the job is completed due to the extensive tangle of blowers, hoses and tubes radiating in all directions throughout the afflicted structure. In most prior systems also, the blowers are too loud to enable work in the structure until the job is completed.
(5) Inefficient air flow. Prior systems moved air inefficiently. Specifically, for example, in my prior system while in positive mode, dry air would be forced several feet down a trunk hose, and then into a manifold. From the manifold, some of the air would be dispersed into a tube which retraced back over the same distance to a hole in the structure close to the blower. This inefficiency was an inherent feature of the general configuration of our prior system, in that a main trunk line hose would transmit the air to a manifold, typically in the center of a room or wet area, and the manifold would then disperse the air through tubes all about the room. Thus, all other things being equal, higher pressure would be required to overcome the friction inherent in the system. Or, conversely, given a maximum amount of pressure sustainable by the blower in the system, the friction in the inefficient distribution of the prior systems would leave that much less effective air movement for actual drying at the point of the wet surface.
(6) Waste of Material. For much the same reason, the prior systems waste a considerable amount of material. Specifically, much more hosing and tubing is required than is with the present invention. This not only creates more manufacturing cost and labor in the field, but also tends to clutter the afflicted structure to the point of presenting a hazardous condition for occupants, such as by increased risk of tripping.
Special Difficulties with Hardwood Floors
Each of the foregoing difficulties with prior systems applied to drying any part of any structure in general, whether walls, ceilings, cabinets, or floors, or any cavities therein. However, particular difficulties are presented with hardwood floors. Hardwood floors, when damaged by excess moisture, can be very difficult to dry. Most homeowners, for example, are completely discouraged to see their floors commence to swell and cup, especially since such damage can occur after the floors only had water on them for as few as 20 minutes. In such cases, with current systems, the owner's alternatives are not good.
One option is total repl
Bennett Henry
Black Lowe & Graham PLLC
Injectidry Systems Inc.
Ragonese Andrea M.
LandOfFree
Moisture removal system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Moisture removal system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Moisture removal system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3119014