Moisture meter, electronic weighing machine for moisture...

Measuring and testing – Moisture content or absorption characteristic of material – By desiccation or extraction

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S073000, C073S029010, C073S029040, C374S014000, C177S061000

Reexamination Certificate

active

06279387

ABSTRACT:

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention is related to an electronic weighing machine for a moisture meter. Specifically, it relates to an electronic weighing machine for the moisture meter that can measure not only the amount of moisture in a test sample, but also the mass of the test sample itself.
The present invention is also related to a heat drying type moisture meter that can accurately determine an extremely low moisture content of the test sample by vaporizing the moisture in the test sample by heating, selecting the moisture from the vaporized moisture and gases, and collecting only the moisture for measurement.
The present invention is also related to a heat drying type moisture meter that can determine an extremely low moisture content of the test sample by vaporizing the moisture in the test sample by heating, selecting the moisture from the vaporized moisture and gases, and collecting only the moisture for measurement.
The present invention is also related to a filter for the moisture meter that allows the adsorbent material in it to be easily replaced with new material.
The present invention is also related to a moisture adsorption unit for the moisture meter. Specifically, it relates to a filter configured so that during replacement of the adsorbent material for collecting the vaporized moisture with fresh material, no external force is applied to the weighing arm in the electronic weighing machine for determining the moisture content of the test sample.
PRIOR ART
As a conventional high precision method of determining the moisture content of a solid or liquid, the Karl Fischer (KF) method is widely known. In the KF method, the Karl Fischer reagent consisting of iodine, sulfur dioxide, pyridine, and methanol quantitatively reacts with water. However, in determining the moisture content by using the KF method, various modifications may be required, depending upon the substance under test. Furthermore, to determine the exact moisture content, a significantly high degree of skill has been required. In addition, in making the determination, a special reagent and glass container have been required.
To solve these problems, moisture meters of a heat drying type have been developed. Such a heat drying type moisture meter, as that given in the gazette Laid-Open Publication No. 7-126961/1995, is equipped with a gas introduction section for producing the carrier gas, a heating section for introducing the carrier gas from this gas introduction section to heat the test sample, a moisture collection section for collecting the vaporized moisture from the carrier gas flowing out of this heating section, and an electronic weighing unit for determining the increase in the mass of the moisture collection section, determining the moisture content of the test sample by heating the test sample to vaporize the moisture in it, and collecting and measuring this vaporized moisture.
As a conventional high precision method of determining the moisture content of a solid or liquid, the Karl Fischer (KF) method is widely known. In the KF method, the Karl Fischer reagent consisting of iodine, sulfur dioxide, pyridine, and methanol quantitatively reacts with water. However, in determining the moisture content by using the KF method, various modifications may be required, depending upon the substance under test. In addition, the KF reagent reacts with substances other than H
2
O. Therefore, to determine the exact moisture content, a significantly high degree of skill has been required. In addition, in making the determination, a special reagent and glass container have been required.
To solve these problems, moisture meters of a heat drying type have been developed. Such a heat drying type moisture meter, as that given in the gazette Laid-Open Publication No. 7-12696/1995, is equipped with a gas introduction section for producing the carrier gas, a heating section for introducing the carrier gas from this gas introduction section to heat the test sample, a moisture collection section for collecting the vaporized moisture from the carrier gas flowing out of this heating section, and an electronic weighing unit for determining the increase in mass of the moisture collection section, determining the moisture content of the test sample by heating the test sample to vaporize the moisture in it, and collecting and measuring this vaporized moisture.
To determine the moisture content of the test sample with higher accuracy, the gazette Laid-Open Publication No. 7-12698/1995 gives a moisture meter that is provided with a filter before the moisture collection section.
As a moisture collection unit for such a moisture meter, a moisture collection unit with which the carrier gas introduction tube is directly connected to the cell charged with adsorbent has been used. However, because the carrier gas introduction tube is directly connected to the cell body, the tube is twisted during replacement of the adsorbent material with fresh material, which results in variations in measurement by the electronic weighing machine.
To allow the adsorbent to be replaced with fresh material without adversely affecting the tube for introduction of the carrier gas, a moisture adsorption unit with which the tube is connected with the cell body through the cell base (as given in the gazette Laid-Open Publication No. 7-12697/1995) has been offered in recent years. With such a moisture adsorption unit, replacement of the adsorbent with fresh material can be made by removing the cell body from the cell base, replacing the adsorbent in the cell body, and reconnecting the cell body to the cell base. This has solved problems such as that of the tube being twisted during replacement of the adsorbent, and substantially improved the determination efficiency. However, such a moisture adsorption unit has presented the following problems.
In conventional electronic weighing machines for heat drying type moisture meters, the amount of the vaporized moisture can be measured, while the mass of the test sample cannot be measured. Therefore, the mass of the test sample must be accurately measured outside the moisture meter. Thus, a separate electronic weighing machine having the same accuracy as that of the moisture meter must be provided.
In addition, with moisture meters having such a conventional electronic weighing machine, measurement of the mass of the test sample with the electronic weighing machine installed outside the moisture meter must be followed by moving the test sample into the moisture meter. This results in adsorption of the atmospheric moisture or discharge of the moisture in the test sample during movement of the test sample. Thus, an error due to the measuring environment and a personal difference in measurement tend to be caused, so that making a determination with high accuracy becomes impossible.
Further, in calculating the moisture content, the operator must enter the mass of the test sample measured outside the moisture meter in the moisture meter, and an electronic weighing machine having the same accuracy as that of the moisture meter must separately be provided. This creates problems of workability and cost having been presented.
Then, the purpose of the present invention is to offer an electronic weighing machine for the moisture meter that can measure not only the amount of the moisture vaporized from the test sample, but also the mass of the test sample itself.
In conventional heat drying type moisture meters, the cylindrical heating tube is of a horizontal type. Thus, opening the cover of the heating tube during insertion of the test sample allows the carrier gas to flow out from the upper portion of the heating tube while the atmosphere flows in from the lower portion of the tube, which results in errors being caused. In addition, with a heating tube that is long sideways, many portions are not heated, thus, so that the moisture vaporized from the test sample tends to be liquefied. Furthermore, because the carrier gas flowing-out port is provided in the middle of the horizonta

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Moisture meter, electronic weighing machine for moisture... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Moisture meter, electronic weighing machine for moisture..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Moisture meter, electronic weighing machine for moisture... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2508827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.