Electricity: magnetically operated switches – magnets – and electr – Magnets and electromagnets – Magnet structure or material
Reexamination Certificate
2000-11-20
2003-05-20
Barrera, Ramon M. (Department: 2832)
Electricity: magnetically operated switches, magnets, and electr
Magnets and electromagnets
Magnet structure or material
C335S285000, C335S286000, C335S296000
Reexamination Certificate
active
06566992
ABSTRACT:
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
The present invention relates to modules which can be coupled to form assemblies which can be used in various technical fields, for example for creating assemblies for games or education, furnishing accessories in the form of ornaments, models of molecule aggregates, patterns, stages, stage-set structures and many other uses.
DESCRIPTION OF THE RELATED ART
Modules in a permanently magnetic material are known and used for single applications and not for the assembly of many modules. These permanent magnet modules are used for example in chess and draughts, whose magnetic pieces rest on a ferromagnetic chessboard, in magnetic boards formed by letters and/or numbers which can be attached magnetically on a ferromagnetic sheet to form texts, and in components of various shapes provided individually with magnets which can be coupled on a ferromagnetic sheet to form two-dimensional figures of animals etc.
These magnetic applications, available on the market, are not based on the coupling of several magnetic modules but simply on the possibility of creating two-dimensional figures, placing the various modules adjacently on a ferromagnetic sheet whereon the single modules are individually short-circuited.
Systems are also known for forming three-dimensional structures which exploit the interlinking of various modules. Modules of various shapes exist, but in general they are prisms with a substantially rectangular plan, formed by a matrix in plastic and by magnetic coupling inserts placed on one or more outline surfaces. The magnetic inserts can be formed by magnetic points with a regular shape, for example square or circular, symmetrically arranged in rows, or by magnetic films with strip magnetisation of alternating polarity.
One of the more serious limits of traditional modules is represented by the fact of having to observe “rules” of assembly which are excessively restrictive and penalising, above all in view of the number of total compositions which can be made.
In respect of the eight faces of the prism which are potentially available for connection, only some of them, and limited to small areas, are effectively active. More particularly two modules with punctiform inserts can at times be connected only if a predetermined number of corresponding rows of magnetic points are superimposed, with the further requisite that these rows of corresponding magnetic points must face each other with opposite magnetic polarity. In other cases connection between the upper face of a module and the lower one of another is possible, but connection between lateral faces or vice versa is excluded. In other cases the connection between faces depends on a predetermined reciprocal positioning of the modules, and it is therefore only possible by overturning one, that is to say by exchanging its upper face with the lower one, the other one remaining unchanged.
Apart from the coupling restrictions, traditional modules are also heavily affected by those caused by the low yield of the magnetic circuit which they originate, i.e. by the percentage of magnetic energy exploited for connection of the modules in relation to the total installed energy.
The high flux dispersion which occurs along the whole magnetic circuit does not enable the installed energy to be exploited in full. This event gains in importance as the complexity of the structure to be built increases, given that assembly of an increasing number of modules causes a gradual accumulation of gaps. In order to obtain composite shapes which are arranged differently but solid, for example cantilevered structures, the magnetic field sources have to be oversized, and the consequent higher need for magnetic material entails a considerable increase in weight of the overall structure and an inevitable increase in costs.
In the case wherein the magnetic inserts are formed by magnetised films with alternating polarity strips, there is additionally the further disadvantage of the fact that the active magnetic area for connection, per coupling surface unit, is very limited and the magnetic material used must necessarily have a low coercive force.
Traditional assembly modules also contribute to the creation of spatial figures which are never magnetically neutral, that is to say spatial figures which can interact appreciably with the surrounding environment and cause situations of real danger. This problem is for example particularly felt in applications for children, where the modules in the form of magnetic bricks can “attract” ferrous materials scattered around, for example needles, pins or nails.
SUMMARY OF THE INVENTION
The object of the present invention is therefore that of providing modules which can be reciprocally attached to form complex assemblies which allow the disadvantages of prior systems to be eliminated.
Another object of the present invention is that of providing assembly modules such as to be rapidly and easily assembled to form a complex assembly and which are also suitable for being disengaged equally easily and rapidly.
Another object of the present invention is that of providing assembly modules which allow extremely stable three-dimensional constructions to be obtained.
According to the invention the foregoing objects are achieved thanks to modules and to their assembly according to any one of the independent claims attached.
In this case assembly defines, for the magnetic flux produced by the magnetic inserts, an appropriate circuit wherein the overall gap, that is to say the amount of the path of the magnetic flux which develops in a non-magnetic material, is only that, required by the possible shape of the modules, by layers with a high friction coefficient or generated by constructional tolerances, which may be created between the two coupling faces of two adjacent modules.
In accordance with the present invention permanently magnetic modules are provided with ferromagnetic yoke and ferromagnetic modules whose combination enables the magnetic flux to be short-circuited completely or at least partially.
The presence of ferromagnetic yokes allows the total number of magnetic modules to be increased as required without thereby increasing at the same rate the overall gap present in the construction.
The magnets which generate the magnetic flux are placed in series and short-circuited by the ferromagnetic yokes in such a way that every additional insertion of modules in the magnetic circuit increases the availability of total coercivity for the structure and consequently contributes to tackling the reluctances which may be present in the magnetic circuit.
Complete use of the magnetic voltages installed allows, on a par with the magnetic material used, a higher force of attraction between the modules.
It is also clear that the short-circuiting which can be achieved by appropriately combining the modules enables, again on a par with the magnetic material used, more flexible and complex structures with unusual shapes to be built, given that the greater force of cohesion considerably increases self-support thereof.
Another diversifying and advantageous aspect is definitely the fact that the permanently magnetic modules with ferromagnetic yoke and the totally ferromagnetic modules are partially or very often totally free of the obligation of being subjected to any predetermined positioning in order to be reciprocally connected and, on the contrary, continuous movement of one module on the other is made possible without interruption.
REFERENCES:
patent: 1535035 (1925-04-01), Philipp
patent: 3041697 (1962-07-01), Budreck
patent: 3196579 (1965-07-01), Lepper
patent: 3723927 (1973-03-01), Blakey et al.
patent: 4596971 (1986-06-01), Hirabayashi et al.
patent: 39 10304 (1990-10-01), None
patent: 56112705 (1981-09-01), None
patent: 2 301 279 (1976-09-01), None
patent: 726328 (1955-03-01), None
LandOfFree
Modules creating magnetic anchorage assemblies and relevant... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modules creating magnetic anchorage assemblies and relevant..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modules creating magnetic anchorage assemblies and relevant... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3041866