Module test socket for test adapters

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S756010, C324S765010, C439S065000, C439S631000, C439S593000

Reexamination Certificate

active

06593763

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a module test socket for test adapters and receives a module containing an integrated circuit having a multiplicity of first contact points. The module test socket has a terminal board with a first connection device for connecting to a tester. The terminal board has second contact points, and a second connection device, which is able to establish electrical connections between the second contact points and first contact points.
For testing modules containing integrated circuits, such as for example memory modules, test adapters are used, currently containing a maximum of eight module test sockets lying in parallel with one another in accordance with a tester that can be connected to the test adapter. In other words, in such a test adapter a tester is assigned eight module test sockets, which are each able to receive one module, that is for example a memory module, so that altogether eight memory modules can be subjected to a test simultaneously. On account of the further development of the testers, it would be possible at the present time for this parallelism of eight modules to be increased to sixteen modules.
In practice, however, so far it has not been possible to achieve parallelism of sixteen module test sockets for receiving a total of sixteen modules, since the individual module test sockets currently cannot be made narrower than approximately with a width of 25 mm. Owing to the configuration of automatic insertion machines, however, for doubling the parallelism from eight modules to sixteen modules a spacing between neighboring test sockets each with a terminal board of at most 15 mm is required. In other words, to allow modules actually to be inserted into sixteen module test sockets with the current automatic insertion machines, the test sockets including terminal board must not be wider than 15 mm. This is because it is only then that modules can be inserted by an automatic insertion machine into two adjacent module test sockets.
Creating a module test socket, which satisfies this condition has so far not been contemplated, since the existing terminal boards, which are also referred to as mounting boards, have horizontally alone a width of approximately 25 mm.
Consequently, for parallel measurement of 8 modules, that is for “8-up measurement” as it is known, the terminal board used is a printed-circuit board which has horizontally the width mentioned of 25 mm and has mounted on it by the surface mounting technique a module test socket into which a module is inserted.
For the configuration of a module test socket, it is of significance that in some cases over 200 coaxial cables and numerous capacitors have to be soldered onto the terminal board or printed-circuit board. This condition also makes it difficult to maintain a maximum spacing of 15 mm.
Finally, it must also be taken into account that not only the numerous components mentioned above have to be accommodated on the terminal board. Rather, it is also important to ensure a connection between the tester and the module to be tested that is as short as possible and technically well-adapted for radio frequency.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a module test socket for test adapters that overcomes the above-mentioned disadvantages of the prior art devices of this general type, which is distinguished by a small width and in which a connection between a tester and the module to be tested that is short and technically well-adapted for radio frequency can be created.
With the foregoing and other objects in view there is provided, in accordance with the invention, a module test socket for a test adapter and receives a module having an integrated circuit with a multiplicity of first contact points. The module test socket contains a terminal board having a first connection device for connecting to a tester, second contact points, and a second connection device for establishing electrical connections between the second contact points and the first contact points. The terminal board and the module lie with their principal surfaces in one plane. The second connection device has first and second rows of socket contacts, at least one of the socket contacts of the first row is in each case electrically connected to at least one of the socket contacts of the second row and the socket contacts of the first row are electrically connected to the first contact points. The socket contacts of the second row are electrically connected to the second contact points. The second connection device has conductive rubber blocks and one of the socket contacts of the first row and one of the socket contacts of the second row in each case are pressed by a respective one of the conductive rubber blocks against one of the first contact points and one of the second contact points, respectively.
The object is achieved in the case of a module test socket of the type stated at the beginning according to the invention by the terminal board and the module lying with their principal surfaces in one plane, which preferably runs vertically. The terminal board has the second connection device containing two rows of socket contacts, and at least one socket contact of the first row in each case is electrically connected to at least one socket contact of the second row and by the socket contacts of the first row being connected to the first contact points and the socket contacts of the second row being connected to the second contact points.
The module test socket according to the invention is distinguished by a series of considerable advantages, attributable to the fact that the module and the terminal board lie in one plane, which is preferably vertically directed. For this purpose, the contactor block forming the module test socket is configured in a special way, which will be explained in the description of the figures on the basis of the exemplary embodiment.
In the case of the module test socket according to the invention, there is no longer any need for a previously necessary horizontal printed-circuit board, so that no soldering points between a horizontal printed-circuit board and a vertical printed-circuit board are required. The electrical path between the module and the coaxial cable to the tester is short, thereby ensuring a connection between the tester and the module to be tested that is technically well-adapted for radio frequency. If need be, there is adequate space on the terminal board for additional components, such as capacitors, resistors, inductances etc. The coaxial cable, which leads to the tester may simply be attached to the terminal board and is easily accessible, which considerably improves the ease of maintenance and repair of the module test socket. The electrical connection between the terminal board and the memory module via the socket contacts is extremely short. A minimum spacing between neighboring module test sockets of less than 15 mm can be readily maintained on account of the vertical alignment of the module and terminal board. This makes a doubling of the modules to be tested in parallel, to currently a total of sixteen modules, readily possible in the case of the existing automatic insertion machines. Soldered junctions between the module and the terminal board are not required thanks to the simultaneous contacting of the module and the terminal board via the socket contacts.
In the module test socket, the terminal board can be readily exchanged, depending on the type of module to be tested in each case. As a result, the module test socket can be used for various modules, such as in particular memory modules, by the appropriate terminal boards being inserted into it in each case. In other words, the terminal board is configured according to the type of module to be tested. If need be, it can receive interference-suppression capacitors and other additional components and be connected to coaxial cables which lead to the tester.
In accordance with an added feature of the invention, the first

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Module test socket for test adapters does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Module test socket for test adapters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Module test socket for test adapters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3049349

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.