Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2000-06-02
2002-04-16
Picard, Leo P. (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S727000, C312S333000, C312S334110, C211S041170
Reexamination Certificate
active
06373707
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to the field of slide assemblies of the type used for mounting drawers and shelving modules for sliding components into and out of rack assemblies, cabinets and other support structures or framework.
BACKGROUND OF THE INVENTION
Slide assemblies are conventionally known to function with low friction so as to support a drawer, tray or other shelving module (henceforth interchangeably referred to as a “chassis”) within a cabinet, framework, vertical support member, rack or other support structure (henceforth interchangeably referred to as “rack assembly”) and to permit the supported chassis to be opened and closed relatively easily therewith. This operation is especially useful for servicing heavy objects being supported by the chassis, simply by opening and closing the chassis generally with minimal effort. In the area of power distribution systems used for telecommunications applications, large and heavy electrical components forming part of the system are supported by the chassis, which is in turn mounted upon a rack assembly for loading components into and out of the rack assembly. Generally, the conventional slide assemblies are installed on the chassis, as well as on the rack assembly, and may be opened for installation and servicing of the electrical components and closed for normal operation of the distribution system.
Conventional slide assemblies, though, typically require installation in the nature of mounting the slide assembly on both the chassis as well as on the rack assembly. This requires the use of additional tooling (e.g., screws, bolts, screw-drivers, fasteners, wrenches) as well as a considerable amount of time for installation. When field upgrades and maintenance of the slide assembly or of the system's electrical components must be undertaken, the same additional tooling is typically required upon disassembly of the parts to be changed. This type of servicing results in substantial down-time (i.e., non-operational time) of the system, which must be electrically and operationally disengaged for safety reasons prior to servicing. This down-time in turn causes a loss of productivity.
Accordingly, what is needed is a slide assembly that is readily and easily installed upon a rack assembly so as to decrease the installation service time. The time to replace a slide assembly includes the time to: (1) disengage power to the system's components; (2) remove any exterior housing elements surrounding the components and fastening connectors; (3) withdraw the chassis from the rack assembly; (4) remove the components from the chassis and disconnect any fasteners or connectors (e.g., screws); (5) remove the slide assembly from the rack assembly and the chassis; (6) reposition and fasten a new slide assembly to the rack assembly and chassis; (7) test the operation of the slide assembly; (8) arrange the system's components back onto the chassis; (9) reposition the chassis within the rack assembly; (
10
) reinstall any exterior housing elements and any fastening connectors; (11) activate power back to the system's components: and (11) test if the system is functional. These steps are highly undesirable because they are labor intensive and time-consuming to perform. Thus, it would be ideal if the conventional slide assembly were improved to be easily installed and removed from the chassis and rack assembly, preferably without the need for additional tools or fasteners, thereby also reducing down-time for field replacement and maintenance of the slide assembly.
None of the known conventional slide assemblies appear to address the above identified undesirable steps in a fully satisfactory manner in addition to having the slide assembly that may be kept captive on both sides of a chassis in an inner locked operational position relative to the rack assembly. Rather, they possess a number of problems in addition to their general failure to address the desirable functional features of easy, quick and simple installation and removal. One key problem is the lack of ability to “hot plug” electrical equipment supported on the chassis into mating connectors disposed at the rear of the rack assembly.
Other drawbacks of conventional slide assemblies include problems with the complexity of their design such as with telescoping slides, which contain many parts forming a comparatively complicated linkage mechanism that adds significantly to the cost and complexity of assembly and materials. In addition, these slide assemblies are bulky and large, often occupying a larger area of space that could otherwise be used for the components of the particular application being mounted on the rack assemble and supported by the slide assembly. Their bulkiness is also a drawback leading to awkward handling of the slide assembly during installation.
Other conventional slide assemblies enable the chassis to be pulled out of the rack assembly for servicing of the electrical components supported thereon. These conventional slide assemblies permit the electrical connections to such components to be disengaged by decoupling the electrical wire connectors made to the components supported on the chassis. For example in telecommunication applications, electrical units supported on the chassis are coupled at the rear of the rack assembly to various electrical connections (e.g. AC input power DC data bus slots, data line slots). Physically decoupling these connectors to service the system supported on the chassis, when the chassis is pulled out of the rack assembly, is problematic because of the tight physical constraints within the rack assembly. This makes the servicing of components not only awkward but also logistically cumbersome when decoupling these electrical connectors. This problem is exacerbated when these connectors are mounted toward the rear portion of the components or electrical systems supported by the chassis. Accordingly, what is needed is an improve slide assembly wherein corresponding mating connectors may be located, guided to, coupled together and decoupled easily and quickly by facilitating the “hot plugging” of connector members disposed on the electrical components being supported on the chassis with the mating connector members disposed at the rear of the rack assembly.
What is desired is a slide assembly to be constructed with a relatively simpler design than conventional slide assemblies, one that preferably does not require additional tools and fasteners, especially once the slide assembly is mounted onto the chassis for installation and de-installation with the rack assembly. The slide assembly must be durable, unlike many conventional slide assemblies with their short operational life and frequently break-down with constant usage. What would be ideal is a low-cost slide assembly that operates upon a simpler design than conventional slide assemblies without components that frequently need to be maintained. It would be beneficial if the slide assembly were compact in nature in terms of having a minimal size, minimal cross-sectional width and height, and consequently a lighter weight.
SUMMARY OF THE INVENTION
The preferred embodiment of the present invention is directed towards a slide assembly having a first portion which is mounted to vertical support members of a rack assembly, and a second portion which is mounted to a chassis being supported in the rack assembly. The slide assembly includes a pair of slide members, each of which comprises: a movable track member; a flange; a clamp; a latch; and a spring-loaded releasable lock actuator. The track member includes: a first surface opposed from a second surface and being adapted so that the second surface engages a corresponding one of opposed sides of the chassis; a front portion; a back portion; a notch including a first cam surface disposed near the back portion; top and bottom edges shaped to form channels along the first surface; at least one of the channels having a first stop member near the front portion; a first opening disposed substantially i
Astec International Limited
Coudert Brothers LLP
Duong Hung Van
Picard Leo P.
LandOfFree
Module mounting slide clamp mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Module mounting slide clamp mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Module mounting slide clamp mechanism will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2843696