Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai
Reexamination Certificate
2007-05-22
2007-05-22
Brusca, John S. (Department: 1631)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Peptide containing doai
C530S400000
Reexamination Certificate
active
10845384
ABSTRACT:
Disclosed herein are methods and compositions for modulating expression of endogenous cellular genes using recombinant zinc finger proteins.
REFERENCES:
patent: 4990607 (1991-02-01), Katagiri et al.
patent: 5096814 (1992-03-01), Aivasidis et al.
patent: 5096815 (1992-03-01), Ladner et al.
patent: 5198346 (1993-03-01), Ladner et al.
patent: 5223409 (1993-06-01), Ladner et al.
patent: 5243041 (1993-09-01), Fernandez-Pol
patent: 5302519 (1994-04-01), Blackwood et al.
patent: 5324638 (1994-06-01), Tao et al.
patent: 5324818 (1994-06-01), Nabel et al.
patent: 5324819 (1994-06-01), Oppermann et al.
patent: 5340739 (1994-08-01), Stevens et al.
patent: 5348864 (1994-09-01), Barbacid
patent: 5350840 (1994-09-01), Call et al.
patent: 5356802 (1994-10-01), Chandrasegaran
patent: 5376530 (1994-12-01), De The et al.
patent: 5403484 (1995-04-01), Ladner
patent: 5436150 (1995-07-01), Chandrasegaran
patent: 5487994 (1996-01-01), Chandrasegaran
patent: 5498530 (1996-03-01), Schatz et al.
patent: 5578483 (1996-11-01), Evans
patent: 5597693 (1997-01-01), Evans et al.
patent: 5602009 (1997-02-01), Evans et al.
patent: 5639592 (1997-06-01), Abramson et al.
patent: 5674738 (1997-10-01), Abramson et al.
patent: 5702914 (1997-12-01), Evans et al.
patent: 5789538 (1998-08-01), Rebar et al.
patent: 5792640 (1998-08-01), Ma
patent: 5814618 (1998-09-01), Bujard et al.
patent: 5830721 (1998-11-01), Stemmer et al.
patent: 5869618 (1999-02-01), Lippman et al.
patent: 5871902 (1999-02-01), Weininger et al.
patent: 5871907 (1999-02-01), Winter et al.
patent: 5916794 (1999-06-01), Chandrasegaran
patent: 5939538 (1999-08-01), Leavitt et al.
patent: 5972615 (1999-10-01), An et al.
patent: 6001885 (1999-12-01), Vega et al.
patent: 6004941 (1999-12-01), Bujard et al.
patent: 6007988 (1999-12-01), Choo et al.
patent: 6013453 (2000-01-01), Choo et al.
patent: 6140081 (2000-10-01), Barbas
patent: 6140466 (2000-10-01), Barbas, III et al.
patent: 6160091 (2000-12-01), Peukart et al.
patent: 6242568 (2001-06-01), Barbas, III et al.
patent: 6270990 (2001-08-01), Anderson et al.
patent: 0 875 567 (1998-11-01), None
patent: WO 92/02536 (1992-02-01), None
patent: WO 95/11922 (1995-05-01), None
patent: WO 95/19431 (1995-07-01), None
patent: WO 96/06110 (1996-02-01), None
patent: WO 96/06166 (1996-02-01), None
patent: WO 96/11267 (1996-04-01), None
patent: WO 96/20951 (1996-07-01), None
patent: WO 96/32475 (1996-10-01), None
patent: WO 97/27212 (1997-07-01), None
patent: WO 97/27213 (1997-07-01), None
patent: WO 98/53057 (1998-11-01), None
patent: WO 98/53058 (1998-11-01), None
patent: WO 98/53059 (1998-11-01), None
patent: WO 98/53060 (1998-11-01), None
patent: WO 98/54311 (1998-12-01), None
patent: WO 99/27092 (1999-06-01), None
patent: WO 99/36553 (1999-07-01), None
patent: WO 99/41371 (1999-08-01), None
patent: WO 99/42474 (1999-08-01), None
patent: WO 99/45132 (1999-09-01), None
patent: WO 99/47656 (1999-09-01), None
patent: WO 99/48909 (1999-09-01), None
patent: WO 00/23464 (2000-04-01), None
patent: WO 00/27878 (2000-05-01), None
patent: WO 00/41566 (2000-07-01), None
patent: WO 00/42219 (2000-07-01), None
patent: WO 01/04296 (2001-01-01), None
patent: WO 02/066640 (2002-08-01), None
patent: WO 03/016496 (2003-02-01), None
Agarwal et al., “Stimulation of Transcript Elongation Requires Both the Zinc Finger and RNA Polymerase II Binding Domains of Human TFIIS,” Biochemistry 30(31): 7842-7851 (1991).
Antao et al., “A Thermodynamic Study of Unusually Stable RNA and DNA Hairpins,” Nuc. Acids. Res. 19(21): 5901-5905 (1991).
Altincicek et al., “Interaction of the Corepressor Alien with DAX-1 Is Abrograted by Mutations of DAX-1 Involved in Adrenal . . . ,” J. Biol. Chem. 275:7662-7667 (2000).
Barbas, C.F. “Recent Advances in Phage Display,” Curr. Opin. Biotech. 4: 526-530 (1993).
Barbas et al., “Assembly of Combinatorial Antibody Libraries on Phage Surfaces: The Gene III Site,” PNAS 88: 7978-7982 (1991).
Barbas et al., “Semisynthetic Combinatorial Antibody Libraries: A Chemical Solution to the Diversity Problem,” PNAS 89: 4457-4461 (1992).
Beerli et al., “Toward Controlling Gene Expression at Will: Specific Regulation of the ERBB-2/HER-2 Promoter by Using Polydactyl Zinc Finger Proteins Constructed from Modular Building Blocks,” PNAS 95: 14628-14633 (1998).
Beerli et al., “Positive and Negative Regulation of Endogenous Genes by Designed Transcription Factors,” PNAS 97: 1495-1500 (2000).
Bellefroid et al., “Clustered Organization of Homologous KRAB Zinc-Finger Genes with Enhanced Expression in Human T Lymphoid Cells,” Embo J. 12(4): 1363-1374 (1993).
Berg, J.M., “DNA Binding Specificity of Steroid Receptors,” Cell 57: 1065-1068 (1989).
Berg, J.M., “SPI and the Subfamily of Zinc-Finger Proteins with Guanine-Rich Binding Sites,” PNAS 89: 11109-11110 (1992).
Berg et al., “The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc,” Science 271: 1081-1085 (1996).
Berg, J.M., “Letting Your Fingers Do the Walking,” Nature Biotechnology 15: 323 (1997).
Bergqvist et al., “Loss of DNA-Binding and New Transcriptional Trans-Activiation Function in Polyomavirus Large T—Antigen with Mutation of Zinc Finger Motif,” Nature Biotechnology 18(9): 2715-2720 (1990).
Blaese et al., “Vectors in Cancer Therapy: How Will They Deliver?” Cancer Gene Therapy 2(4): 291-297 (1995).
Bonde et al., “Ontogeny of the V-ERBA Oncoprotein From the Thyroid Hormone Receptor: An Alteration in the DNA Binding Domain Plays a Role Crucial for VERBA Function,” J. Virology 65(4): 2037-2046 (1991).
Caponigro et al., “Transdominant Genetic Analysis of a Growth Control Pathway,” PNAS 95: 7508-7513 (1998).
Celenza et al., “A Yeast Gene That is Essential for Release from Glucose Repression Encodes a Protein Kinase,” Science 233: 1175-1180 (1986).
Cheng et al., “Identification of Potential Target Genes for ADRLP Through Characterization of Essential Nucleotides in UASI,” Mol. Cellular Biol. 14(6): 3842-3852 (1994).
Cheng et al., “A Single Amino Acid Substitution in Zinc Finger 2 of ADRLP Changes Its Binding Specificity at Two Positions in UASI,” J. Mol. Boil. 251: 1-8 (1995).
Choo et al., “Designing DNA-Binding Proteins on the Surface of Filamentous Phage,” Curr. Opin. Biotechnology 6: 431-436 (1995).
Choo et al., “Physicial Basis of Protein-DNA Recognition Code,” Curr. Opin. Struct. Biol. 7(1): 117-125 (1997).
Choo et al., “Promoter-Specific Activiation of Gene Expression Directed by Bacteriophage-Selected Zinc Fingers,” J. Mol. Biol. 273: 525-532 (1997).
Choo et al., “In Vivo Repression by a Site-Specific DNA-Binding Protein Deisned Against an Onogenic Sequence,” Nature 372: 642-645 (1994).
Choo et al., “All Wrapped Up,” Nature Struct. Biol. 5(4): 253-255 (1998).
Choo, Y., “Recognition of DNA Methylation by Zinc Fingers,” Nature Struct. Biol. 5(4): 264-265 (1998).
Choo, Y., “End Effects in DNA Recognition Code,” Nuc. Acids. Res. 26(2): 554-557 (1998).
Choo et al., “A Role in DNA-Binding for the Linker Sequences of the First Three Zinc Fingers of TFIIIA” Nuc. Acids Res. 21(15): 3341-3346 (1993).
Choo et al., “Toward a Code for the Interactions of Zinc Fingers with DNA: Selection of Randomized Fingers Displayed on Phage,” PNAS 91: 11163-11167 (1994).
Choo et al., “Selection of DNA Binding Sites for Zinc Fingers Using Randomized DNAS Reveals Coded Interactions,” PNAS 91: 11168-11172 (1994).
Clarke et al., “Zinc Fingers in Caenorhabditis Elegans: Finding Families and Probing Patheways,” Science 282: 2018-2022 (1998).
Cook et al., “Three Conserved Transcriptional Repressor Domains are a Defining Feature of the TIEG Subfamily . . . ,” J. Biol. Chem. 274:29500-29504 (1999).
Corbi et al., “Synthesis of a New Zinc
Case Casey C.
Gregory Philip
Lai Albert
Snowden Andrew
Tan Siyuan
Brennan Sean M.
Brusca John S.
Robins & Pasternak LLP
Sangamo Biosciences, Inc.
LandOfFree
Modulation of endogenous gene expression in cells does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modulation of endogenous gene expression in cells, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modulation of endogenous gene expression in cells will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3746184