Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2002-05-06
2004-10-05
Casler, Brian L. (Department: 3763)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S142000
Reexamination Certificate
active
06800069
ABSTRACT:
BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to infusion devices. More particularly the present invention relates to a pressure infuser apparatus for use with an infusion device, the pressure infuser apparatus having a modular configuration allowing a user to interchangeably utilize one or more manual and/or motorized pump modules to modify the configuration of the pressure infuser apparatus to suit the changing infusion needs of a patient.
2. The Relevant Technology
Infusion devices are used for the subcutaneous administration, to humans or animals, of intravenous fluids such as blood, nutrients, medicine, and saline. The fluids are stored and administered from pliant infusate bags typically made from plastic film materials. The infusate bags facilitate the administration of infusate fluids, while limiting the amount of air that is transferred to the patient with the fluid.
Infusion devices allow fluids to be administered to patients in a variety of manners. A common administration technique involves suspending an infusate bag from a hook or peg and allowing gravity to provide the force needed to deliver the fluid to the patient by means of a delivery line. Where suspension administration is utilized, the infusate bag includes an outlet tube at the lower end of the bag. A delivery tube is attached to the outlet tube for delivering the fluid from the bag to the patient. The delivery tube usually includes an observable drop-feed device and an adjustable flow delivery valve for allowing medical staff to regulate the fluid flow rate.
There are limitations to using suspension to administer IV fluids. Where gravitational forces are the sole means of administering fluid, the viscosity of some fluids, such as blood and plasma, makes delivery of the fluid problematic. The problem is exacerbated where the fluid must be delivered quickly and efficiently, as with major traumas where large amounts of blood are required in a short amount of time. To facilitate a higher rate of infusate delivery, such as is required with highly viscous fluids, medical staff utilize various methods to increase the pressure on the infusate fluid. Examples of such methods include, pressure pumps, inflation cuffs, inflation bladders, or even manual compression of the infusate bag.
Another limitation of suspension administration relates to ambulation of patients. Ambulation can be difficult where an IV pole must be wheeled by the patient or medical staff. The configuration of many IV poles renders them unstable leading to accidents which can cause injury to patients, staff, or bystanders and/or rupture the infusate bag. Not only are the IV poles unstable, they are also inconvenient. It is difficult to maneuver the poles while pushing a wheel chair or hospital bed, particularly where additional medical devices must be transported with the patient. As with the delivery of highly viscous fluids, pressure pumps, inflation cuffs, inflation bladders, and manual compression of the infusate bag allow fluids to be delivered to the patient as needed during ambulation.
Among the methods of providing compression of the infusate bag, pressure infuser bags have been accepted in the medical products industry as an efficient and inexpensive method for providing the pressure required by highly viscous fluids, ambulation, and many other circumstances. Pressure infuser bags comprise an inflatable air bladder with a sleeve or pouch for holding the infusate bag. When the user inflates the air bladder, pressure is exerted on the infusate bag contained in the sleeve, thus providing the pressure needed to deliver the fluid.
A variety of mechanisms have been developed to inflate the pressure infuser bag. The mechanisms have been adapted to meet the requirements of medical staff in a variety of circumstances. For example, one traditional inflation mechanism is the compressible hand bulb. The bulb is comprised of rubber or flexible plastic material with the ends of the bulb having air valves. The bulb is attached to the pressure infuser bag by tubing. A user inflates the pressure infuser bag by compressing and releasing the bulb. The simple construction of many hand bulb mechanisms permits the bulbs to be manufactured quickly and inexpensively. A limitation of such hand pumps is that a user must compress and release the bulb many times to inflate the pressure infuser bag. This is particularly true for larger pressure infuser bags that can have up to a three-liter capacity. The repetitive compression can be both time consuming and fatiguing for users of hand held pumps.
Motorized pneumatic pump mechanisms are configured to quickly inflate the pressure infuser bag with little effort from the user. Some motorized pumps include a one-touch button for inflating the bag to a given pressure. By providing a mechanism to quickly inflate the pressure infuser bag, the medical staff can begin delivery of high amounts of fluids in a very short amount of time. The ability to quickly and efficiently deliver high amounts of fluid is critical in trauma and critical care situations often encountered in critical care units, emergency rooms, and operating rooms. A drawback of motorized pumps is that their configuration makes pressure infuser bags having motorized pumps costly for hospitals to obtain in large quantities.
Hospitals need not provide motorized pumps for every patient in every situation. Many patients require the delivery of high amounts of fluid for a limited and determinable amount of time. For example, a patient requiring the benefits of an pressure infuser bag having a motorized pump while in critical care might need nothing more than a pressure infuser bag having a compressible bulb when the patient is stabilized and being transferred to a step down unit. Problems can be encountered in switching between pressure infuser bags having a motorized pump and pressure infuser bags having a compressible bulb. The time, effort, and complication associated with switching the infuser pumps can make such switching difficult and impractical.
BRIEF SUMMARY OF THE INVENTION
The present invention is directed to a modular pressure infuser apparatus allowing a user to interchangeably utilize one or more manual and/or motorized pump modules to modify the configuration of the pressure infuser apparatus to suit the changing infusion needs of a patient. The modules of the pressure infuser apparatus can include a pressure infuser bag module, a motorized pump module, and a manual pump module. The modular configuration of the pressure infuser apparatus permits the user to detach and reattach the motorized pump and/or the manual pump to the pressure infuser bag quickly, easily, and efficiently without decreasing the air pressure in the pressure infuser bag.
By providing selectively removable pump modules, the user can select the configuration of the pressure infuser apparatus that is best adapted to the needs of the patient. For example, while a patient is in an unstable condition, such as is often encountered in an emergency room, operating room, or critical care unit, medical staff can utilize a motorized pump in conjunction with the pressure infuser bag. The medical staff can also couple the manual pump with the motorized pump and the pressure infuser bag. By having a manual pump and a motorized pump a user can inflate the pressure infuser bag in the event of motorized pump failure.
Once the patient is stabilized and the need for rapid inflation of the pressure inflation bag has passed, the medical staff can simply remove the motorized pump module. This allows the motorized pump module to be utilized for other patients. The ability to remove the motorized pump can be helpful where a stabilized patient is being transferred to a step down or recovery unit where motorized pumps are not typically used. The motorized pump module can remain in the critical care unit, operating room, or emergency room where it will be better utilized.
These and other objects and features of the present invention will become more fully apparent
Lampropoulos Fred P.
Stout Thomas D.
Casler Brian L.
Merit Medical Systems Inc.
Williams Catherine S.
Workman Nydegger
LandOfFree
Modularized infusion pump apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modularized infusion pump apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modularized infusion pump apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3302729