Modular wall component with insulative thermal break

Static structures (e.g. – buildings) – With synthetic resinous component – Foam

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S284000, C052S309160, C052S407300, C052S584100, C052S779000, C052S794100, C052S800120

Reexamination Certificate

active

06421972

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to building structures. Stated more particularly, this patent discloses and protects a modular wall component with an insulative thermal break that is formed by joined metal frame structures with integral insulative material.
BACKGROUND OF THE INVENTION
In relatively recent times, it has become increasingly commonplace for building structures, particularly the exterior walls thereof, to be assembled by the coupling of a plurality of prefabricated or modular wall components. Typically, such prefabricated wall components are crafted in predetermined dimensions at a factory and then transported to the site of the building structure for assembly. In their early days and, to a lesser extent, continuing until the present, these prefabricated wall components were an assembly of wood studs. Wood structures were found to be advantageous for a number of reasons including that they demonstrate better insulative properties than corresponding metal structures.
However, wood stud wall components suffer from a number of disadvantages. For example, wood is relatively heavy, tends to expand and contract, and is subject to inherent imperfections. Accordingly, it is becoming more commonplace to form modular wall components of metal studs to exploit their lightness and consistent quality and structural performance. Unfortunately, metal stud structures of the prior art have exhibited the major disadvantage of being excellent conductors of heat. With this, building structures formed of such metal stud modular wall components can exhibit undesirable heat loss in the winter as heat is transmitted from within the building structure along a continuous metallic thermal path provided by the metal studs. Furthermore, the metal studs can lead to disadvantageous heat gains as summer heat can be transmitted into the building structure along the continuous thermal path.
Advantageously, a number of inventors have sought to provide a modular wall component that exhibits the desirable characteristics of metal stud structures with respect to weight, strength, and consistent performance while minimizing or avoiding the undesirable heat transfer properties resulting from a continuous thermal path provided by metal-to-metal connections. For example, one method for minimizing heat gains and losses has been to provide insulation between the metal studs of the panel framework. Most commonly, this has been accomplished by the industry standard practice of inserting insulative material into the frame assembly cavities once the framework is completely erected at the job site. In later days, foam insulation has been injected into the spacing between the metal studs.
Unfortunately, both of these practices require the separate steps of erecting the modular components into a complete wall structure and then insulating that completed structure. With this, the time required for creating a complete wall installation is increased as is the overall cost of the building structure. Furthermore, even the most diligent installer of insulation will be unable to fill each and every void and gap between the studding framework, and the situation will certainly be worsened when the quality of the installation depends on the work product of a less than diligent installer. Still further, these methods of insulation disadvantageously leave continuous paths of heat transfer across the modular wall component intact.
Realizing this, a number of further inventors have developed modular wall components that are provided with a layer of insulation during the initial assembly of the wall component. A few of these inventors have been so industrious as to further attempt to create a break in the thermal path between the outer surface and the inner surface of the component. Unfortunately, these prior art devices have continued to suffer from a number of problems. By way of example, some such devices have confronted particular deficiencies of the prior art while either ignoring or even exacerbating other deficiencies. Further inventions have addressed a plurality of deficiencies of the prior art only by the creation of undesirably complex and expensive constructions.
For example, a prefabricated wall panel with an integral layer of insulation is disclosed in U.S. Pat. No. 4,633,634 to Nemmer et al. where a plurality of expanded polystyrene panels are joined in an edge-to-edge relationship and are connected by C-shaped metal channels that are fastened together in a back-to-back relationship. Advantageously, the outer surfaces of the polystyrene panels extend beyond the outer edges of the metal channels whereby the invention avoids providing a continuous heat path. In doing so, however, the outer surface of the panel of the '634 patent disadvantageously does not provide a secure surface to which outer wall coverings can be fastened. Furthermore, the panel has just a single frame structure whereby its strength and rigidity are compromised.
U.S. Pat. No. 3,217,455 to Burges reveals another modular panel that seeks to provide improved thermal properties. In this device, continuous metal paths are eliminated by an arrangement of members of insulating material, such as neoprene, that are fused together by vulcanization or other similar process. With this, the structure is said to provide improved properties of acoustic and thermal insulation. Disadvantageously, the Burges invention, in a manner typical of such prior art structures, achieves these improved properties at the expense of providing a structure that is an exceedingly complex arrangement of a plurality of elements that must be joined by complex processes.
In light of the state of the art as summarized above, it will be apparent that there is a need for a modular wall component structure that satisfies one or more of the deficiencies that the prior art has been unable to meet effectively. It is clearer still that a modular wall component structure that meets each and every need left by the prior art while providing a number of heretofore unrealized advantages thereover would represent a marked advance in the art.
SUMMARY OF THE INVENTION
Advantageously, the present invention sets forth with the broadly stated object of providing a modular wall component that solves each of the problems left by the prior art while providing a number of heretofore unrealized advantages thereover.
Stated more particularly, a principal object of the present invention is to provide a modular wall component that provides improved properties of thermal and acoustic insulation by eliminating continuous metal paths extending from an inner surface to an outer surface of the wall component.
A further object of the invention is to provide a modular wall component that eliminates continuous metal paths while remaining exceedingly simple and efficient in construction.
Yet another object of the invention is to provide a modular wall component that demonstrates exemplary structural strength and rigidity.
Still another object of the invention is to provide a modular wall component that is light in weight such that it can be lifted and managed easily and safely.
A still further object of the invention is the provision of a modular wall component that accomplishes the aforementioned objects while providing secure attachment surfaces on both sides of the wall component.
These and further objects and advantages of the present invention will become obvious both to one who reviews the present specification and drawings and to one who has an opportunity to make use of an embodiment of the present invention.
In accomplishing the aforementioned objects, a most basic embodiment of the present invention for a modular wall component essentially comprises an insulated frame structure that is fixed to an open frame structure. The insulated frame structure incorporates a plurality of interconnected structural frame members and a means for insulating the insulated frame structure. The open frame structure is formed with a plurality of interconnected structural frame members, and an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular wall component with insulative thermal break does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular wall component with insulative thermal break, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular wall component with insulative thermal break will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2848261

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.