Brushing – scrubbing – and general cleaning – Machines – With air blast or suction
Reexamination Certificate
2001-05-18
2003-09-30
Till, Terrence R. (Department: 1744)
Brushing, scrubbing, and general cleaning
Machines
With air blast or suction
C015S321000
Reexamination Certificate
active
06625844
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a vacuum system and method and, more particularly, to a vacuum system and method comprising a plurality of modular components.
2. Description of the Related Art
Vacuum machines are employed to ingest or “vacuum up” unwanted debris and collect them in a container so that they can be disposed of later.
Dry vacuuming involves the application of vacuum suction by an applicator tool to lift dirt and debris from a surface for transfer through a vacuum hose to a temporary storage container.
Wet vacuuming also involves the use of vacuum pickup, but in a system which has sufficient suction lift capability and watertight construction to lift and transfer liquid and debris, typically to a sewer drain or a temporary storage tank.
Hydro-extraction vacuuming or “steam” cleaning involves the application of a high pressure steam or jet of an aqueous emulsifying solution to a surface and simultaneously or subsequently applying a wet vacuuming operation to pick up and transfer used cleaning solution to a temporary storage tank. State of the art machines mount the cleaning liquid nozzle and the vacuum pick-up head in the same applicator tool to facilitate the hydro-extraction operation. Oftentimes, the vacuum machines have a wand that delivers hot water to a surface to be cleaned, such as carpet. A vacuum tube or hose is also coupled to a head of the wand and collects the wastewater delivered to the surface as an operator cleans the carpet using a back and forth motion.
Pressure washing involves the application of high pressure cleaning solutions or water to a “gun like” applicator tool having a long nozzle and a trigger to activate the high-pressure jet of water for cleaning surfaces or machines of grease and foreign matter.
In the past, cleaning vans had permanent onboard equipment to pressurize, heat and vacuum the water. The equipment was permanently mounted in the vehicle, and had pressure lines and vacuum tubes extending into the building being cleaned.
A collection tank in the vehicle usually housed either a removable, re-usable rigid container for debris or a removable, disposable, replaceable bag for debris. Prior art vacuum devices for heavy-duty industrial use were usually large, heavy and difficult for the operating personnel to move to and from a job site. The devices typically contained all the necessary functions, such as a pressurizer and vacuumer all in one unit. Because the devices had to be portable, the devices could not pressurize the water over 350 pounds per square inch (psi). Also, the vacuum capability of the motors on the portable devices was usually less than 100 cubic feet per minute (cfm).
While the equipment mounted in the vehicles was suitable for cleaning areas that were located less than 250 feet from the vehicle, areas in excess of 250 feet were difficult to clean because of the loss of pressure and vacuum that would occur when the pressure lines and vacuum hoses exceeded this length, such as when cleaning carpeted areas of a multi-story building were being cleaned. This made the use of the vehicles to clean these types of environments difficult. In these situations, portable devices were used, but these did not have the vacuum capability needed.
Another problem with prior art machines is that they did not have the capability to enable multiple wands to be used while maintaining a high-level of pressure and vacuum. Also, the equipment was not portable so that even if a small area had to be cleaned, an operator of the vehicle would have to unload and use an entire length of vacuum hose.
Still another problem with prior art devices is that after the vacuum device had filled to a level with wastewater and debris, the operator would have to cease using the device and manually empty the water. In some prior art systems, a heater was provided to heat the pressurized water. As the operator actuated the trigger on the wand, the heater mechanism would heat the water to the desired temperature. When the operator released the trigger the heater would stop heating the fluid. During the cleaning process, the operator actuated the trigger many times. A problem with prior art devices is that whenever the trigger was released the heating of the fluid to be delivered to the carpet would cease, even if the temperature of the fluid was not heated to the desired temperature, thereby causing cool or warm water to be delivered to the area to be cleaned.
What is needed therefore is a modular system and method whose modules are easy to transport and which can provide a high level of water pressure regardless of the number of wands (e.g., one or two wands) being used, while maintaining the desired temperature of the fluid being delivered to the area being cleaned, regardless of the actuation of the trigger and which at the same time is modular and which can be easily transported from a delivery vehicle to an area to be cleaned.
SUMMARY OF THE INVENTION
It is a primary object of the invention to provide a modular cleaning system having components which are easy to individually transport to an area to be cleaned.
Another object of the invention comprises a cleaning system comprising a plurality of cleaning modules, said plurality of cleaning modules being usable either inside a vehicle or inside a building.
Another object of the invention comprises a portable vacuum system comprising a receiving tank for receiving vacuumed wastewater, said receiving tank comprising at least one wheel for facilitating transporting said receiving tank, at least one vacuum motor for generating a vacuum in said tank and at least one port for coupling said receiving tank to at least one vacuum hose; and said at least one vacuum motor generating a vacuum of at least 60 cubic feet per minute.
Still another object of the invention comprises a method for cleaning comprising the steps of providing a plurality of portable cleaning modules, said plurality of portable cleaning modules being usable either inside a vehicle or inside a building, selecting at least one of said plurality of portable cleaning modules for use in the building, transporting said at least one of said plurality of portable cleaning modules to an area to be cleaned and cleaning said at least one area.
Yet another object of the invention comprises an automatic pump-out system for automatically pumping fluid out of a fluid collection container comprising a pump system, at least one sensor for sensing when the fluid reaches a predetermined level; and a pump-out circuit coupled to said pump system and said at least one sensor for energizing said pump system to pump said fluid out of said fluid collection container when said at least one sensor senses that the fluid has reached said predetermined level.
Still another object of the invention comprises a portable heater system for heating fluid used for cleaning comprising a housing having a heater coil therein for receiving said fluid, a heater for heating said coil, a control valve for controlling heating of said coil; and an afterburner circuit coupled to said control valve and said heater for permitting heating of said fluid when said fluid does not flow through said coil.
Yet another object of the invention comprises a portable pressure system comprising a housing having a pump therein for pressurizing fluid in a pressure line, and a plurality of wheels coupled to said housing for permitting said pressure system to be transported between a vehicle and a cleaning area to be cleaned.
Still another object of the invention comprises a portable vacuum system comprising a receiving tank for receiving vacuumed waste water, said receiving tank comprising at least one wheel for facilitating transporting said receiving tank, at least one vacuum motor for generating a vacuum in said tank, at least one port for coupling said receiving tank to an extractor unit and at least one second port for coupling said receiving tank to a second extractor unit and said at least one vacuum motor generating a vacuum of at least 60 cubic feet per
Jacox Meckstroth & Jenkins
Till Terrence R.
LandOfFree
Modular vacuum system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modular vacuum system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular vacuum system and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3099974