Modular structure of an apparatus for regulating the...

Electric power conversion systems – Current conversion – With means to introduce or eliminate frequency components

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C363S089000

Reexamination Certificate

active

06445600

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of power electronics. More particularly, the invention relates to a method for regulating the harmonics of current drawn from power lines, by electric equipment, using modular design and construction techniques.
BACKGROUND OF THE INVENTION
The art has devoted a considerable effort to the problem of shaping the current amplitude and phase drawn from the power line, loaded by electric equipment. Switch Mode and Resonant Converters are widely used for DC—DC (Direct Current-Direct Current), DC-AC (Direct Current-Alternate Current), AC-DC and AC—AC conversion. In some applications, the purpose of power conversion is to shape the current at the input of the converter. For example, an input power stage known in the art as an Active Power Factor Correction (APFC) circuit, the function of the converter is to insure that the AC current supplied from the source (power line) will appear in almost the same shape and phase as the source voltage. Thus, a Power Factor (PF) of unity is obtained.
The need for APFC stages is driven by the worldwide concern about the quality of power supplies. Generally, poor power factors results is several problems, comprising low efficiency of power transmission, interference to normal operation of other units connected to the same power line, as well as distortion of the voltage shape. Voluntary and mandatory standards that restrict the acceptable level of the current harmonics generated by the loading equipment, have been adopted by many countries, so as to maintain high power quality.
Another advantage of APFC is increased power levels that may be drawn from the power line. Looking at the spectral components of the current without APFC, only the fundamental (first) harmonic component contributes to the real load power. The root mean square (rms) magnitude of the current is increased beyond the level of the fundamental magnitude, as a result of higher order harmonics. Since the operation of protection elements, such as fuses and circuit breakers, is affected by the rms current, increased rms level limits the maximum power level that may be drawn from the line. Using electric equipment with APFC enables the rms current level to be equal to the level of the fundamental harmonic. Hence, the power that may be drawn from the line may reach its maximum theoretical level.
From the above description, it is clear that the need for APFC is wide spread, and economic implementation of APFC circuitry is of prime importance. Moreover, the cost of APFC circuits is of great concern considering the fact that APFC cost is an add-on expense to the functionality of the original equipment. As a result, APFC units should be constructed using methods that are economic during production, and are easy to integrate in any existing equipment.
Some known methods for physical implementation of APFC stages, sub-circuits, which are part of the electrical circuit of the (loading) equipment are used. In this case, the designer of this equipment engages passive and active components, as well as Integrated Circuits (ICs) to construct the desired APFC stage. Normally, designs that involve many components suffer from several drawbacks, like relatively high cost and low reliability. Moreover, these designs require many wiring connections, resulting in relatively high susceptibility to Electro-Magnetic Interference (EMI), “ground noise” and other engineering disadvantages.
Other construction methods comprise one “block” (APFC block) that includes all the components and circuitry of an APFC stage. This implementation provides functional solution to the design problem from the electrical aspect, but still requires satisfactory heat dissipation design. Still, a separate APFC unit should be normally purchased from another manufacturer (which is more skilled in this kind of products), leading to higher cost. Another disadvantage is the fact that this realization is not compatible with IC technology, which normally has the benefit of low cost in mass production. Further problem using APFC block is the fact that in this implementation, all heat dissipating components, such as the main switch, diodes and the inductor are close to each other. This proximity leads to a severe heat dissipation problem, which may limit the power handling capability of such module. Additionally, because of this component proximity, EMI restrictions require heavy snubbing, shielding and filtering, all leading to complexity, higher cost and lower efficiency.
U.S. Pat. No. 5,530,635 to Yashiro describes a power supply divided into a noise filtering module, one or more power factor and harmonic correction modules, one or more DC—DC converter modules and a backup power supply for the power converter modules. Each module may optionally be combined so as to construct a desirable power supply according to various required specifications. However, this construction lacks simplicity, since it is not realizable using IC technology and in addition is not advantageous with respect to optimal heat dissipation.
U.S. Pat. No. 5,047,912 to Pelly describes a modular four terminal realization of APFC stages. The control circuit comprises a signal differentiator, for generation of a reference signal to the feedback loop of the circuit. Differentiators are known in their extreme noise sensitivity, which may corrupt the output signal. Switching circuits such as Pulse Width Modulation (PWM) Boost converters, which are characterized by high frequency noise injection, are also problematic to use. Another problem arises from this patent is the reference feedback signal is driven from the line voltage, which contains additive noise that distorts the shape of the desired controlled line current.
A different problem, which is not solved by U.S. Pat. No. 5,047,912 is the generation of a local power supply (from the line voltage) for the control circuitry. High power APFC stages requires local power supplies of several watts. Using an external power supply for this purpose requires additional circuitry and pin connection, which increase cost. Another approach is to drive the power supply from a voltage divider from of the output voltage, or from the voltage across the main switch. This approach is extremely inefficient, especially in case of high power applications.
Another disadvantage of U.S. Pat. No. 5,047,912 is the need for fast diodes for its input rectifier, due to the fact that the line rectifier in this patent is locate after the input inductor. At this point, the signals are switching frequency signals that requires fast rectifier diodes, so as to eliminate high power loss. Using fast diodes introduces higher switching noise, as well as higher cost (since such diodes are more expensive).
All the methods described above have not yet provided satisfactory solutions to the task of constructing simple, low-cost, modular APFC stages.
It is an object of the invention to provide an APFC unit, for regulating the harmonics of power line current, that comprise low number of components.
It is another object of the invention to provide a compact, low cost APFC unit.
It is another object of the invention to provide a compact APFC unit, with a minimal amount of interconnections.
It is still another object of the invention to provide an APFC unit with efficient local power supply feeding switching and control circuit.
It is yet another object of the invention to provide an APFC unit which is compatible with IC technology.
It is yet another object of the invention to provide an APFC unit which do not comprise signal differentiation, while overcome the drawbacks of the prior art.
Other purposes and advantages of the invention will appear as the description proceeds.
SUMMARY OF THE INVENTION
The invention is directed to construction of a modular apparatus for regulating the harmonics of current drawn from power lines by electric equipment. This apparatus comprises a first rectifier circuit module consisting of an array of rectifying diodes, the inlet of which is connected to the power lines; a seco

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular structure of an apparatus for regulating the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular structure of an apparatus for regulating the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular structure of an apparatus for regulating the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2876607

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.