Modular scope

Optics: measuring and testing – By shade or color – With reflective multicolor chart or standard

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S399000, C042S122000

Reexamination Certificate

active

06813025

ABSTRACT:

BACKGROUND OF THE INVENTION
Sporting and hunting enthusiasts have long used scopes to better enable visualization of wildlife. For example, hunters often attach riflescopes to their firearms to aid both in prey identification and shot accuracy. Moreover, wildlife photographers and enthusiasts typically attach scopes to both still and video cameras when taking pictures of wildlife.
Conventional scopes have been relatively unchanged for more than 30 years since the introduction and widespread use of variable power and nitrogen filling. The major exception is the introduction of illuminated reticles, or cross hairs, in the late 1990s, which enabled scopes to be used during low-light periods such as dawn and dusk.
The simplest scopes are fixed power and include objective and eyepiece lenses positioned at the ends of a body tube. The scope may include an erector assembly, which may include erector lenses mounted in a separate tube assembly, which is itself suspended inside the body tube. The erector assembly may be pivoted at one end by external adjustment screws to provide windage (i.e. horizontal) and elevation (i.e. vertical) movement of the point of aim.
Variable power riflescopes are more complex. The erector optics move along the optical axis of the scope to give an image of varying magnification. Generally, the user turns a ring external to the scope body to alter the relative size of the image in the scope. A typical zooming riflescope will create 3× (three times life-size) to 9× (nine times life-size) images, while a photographic scope may produce images in a much broader range of magnifications.
Riflescopes are typically mounted on firearms so a precise relationship is established between the bore of the rifle barrel and the shooter's line of sight through the riflescope. The goal is generally to have the point of aim for the scope match the point of impact for a particular type of ammunition at a known distance from the shooter. A scope may be “zeroed” during practice shooting to attempt to limit adjustments during actual shooting to accommodate for changes in distance and wind.
Hunters typically make many changes to the various settings of their scope during a day of hunting. For example, they may scan an area at low power (for example 3× magnification) to find an object of interest, and then zoom to a higher power (for example 9× magnification) when a potential target is spotted. In addition, those hunters who typically shoot small animals at long distances, often referred to as varmint hunters, make frequent changes to the elevation adjustment of their scopes during a single hunting session. Moreover, in situations when the distance to targets changes greatly, the shooter and rifle must be able to adapt to new conditions quickly and with a minimum of distraction.
This need may be even greater in military or law enforcement situations where the shooter must be aware of far more than simply the location of the target. For example, law enforcement SWAT team officers are always very conscious of their environment as well as the precise set up of their equipment. Adjustment to their scopes must be made with minimum distraction from their key duties.
Previous scopes have been described that allow users to zoom scopes with a minimum of distraction from the hunting or picture taking situation. See e.g. U.S. Pat. Nos. 6,252,706, 5,930,934, and 5,388,005, each of which is hereby incorporated by reference in its entirety for all purposes. In addition, scopes have been described that allow users to control adjustment of reticle brightness and night vision images. See e.g. U.S. Pat. Nos. 6,131,294, 5,937,562, 5,892,617, 5,375,072, 5,339,720, and 4,531,052, each of which is hereby incorporated by reference in its entirety for all purposes. Moreover, astronomical scopes have been described that allow for tracking of celestial bodies. See e.g. U.S. Pat. No. 6,304,376, which is hereby incorporated by reference in its entirety for all purposes. However, none of the previously described scopes allow the user to adjust the scope's magnification, focus, reticle brightness, windage and elevation without leaving the firing position. Thus, a scope that enables the user to make adjustments along the full range of standard riflescope adjustments without having to leave the firing position would be greatly desired.
Furthermore, traditional scope body designs include screws, levers, rings, or switches that penetrate the walls of the scope body. This can lead to fogging caused by the introduction of water or other fluids into the scope body. Because fogging of the lens can dramatically hinder the user's ability to see through the scope, a scope that prevents fogging would be greatly desired.
Most scopes are very limited in the degree to which they can be upgraded or changed to adapt to different conditions or new technologies. Thus, users are often forced to carry multiple optical devices, such as a scope plus binoculars, in anticipation of different conditions. For example, hunters may carry binoculars to scan an area to find an object of interest and then switch to a rifle and scope to shoot the targeted object.
Moreover, users who wish to own scopes having the latest capabilities are forced to purchase new scopes each time a new technology becomes available. Because both of these scenarios create inconvenience and increased expense for the user, it would be desirable to have a single scope that can be adapted to different conditions or upgraded to be compatible with new technology.
SUMMARY OF THE INVENTION
In a first embodiment, the present invention provides a modular viewing scope configured to be attached to a device. The modular viewing scope may include a plurality of modular units wherein one or more of the units are selected from the group consisting of: a body module, an objective module, an eyepiece module, a control module, and a test module. Moreover, each of the modular units may be adapted to be replaced and/or upgraded as desired by a user without requiring removal of the viewing scope from the device.
In another embodiment, the present invention provides an adjustable viewing scope adapted to be mounted on a device. The adjustable viewing scope may include a body module including a plurality of adjustment motors adapted to adjust the scope's magnification, focus, windage and elevation; an objective module adapted to provide a visual display; and a control module in electronic communication with the body and objective modules. The control module may be mounted on the body, and include a series of user inputs that can be accessed and activated by a user without requiring the user to move his visual focus from the scope. The inputs may be in electronic communication with the plurality of adjustment motors.
The advantages of the present invention will be understood more readily after consideration of the drawings and the Detailed Description.


REFERENCES:
patent: 3506330 (1970-04-01), Allen
patent: 3709124 (1973-01-01), Hunt
patent: 4777352 (1988-10-01), Moore
patent: 5400267 (1995-03-01), Denen et al.
patent: 5661598 (1997-08-01), Tomioka
patent: 5669174 (1997-09-01), Teetzel
patent: 5673143 (1997-09-01), Chin et al.
patent: 6020996 (2000-02-01), Perkins et al.
patent: 6192614 (2001-02-01), Cliburn
patent: 6208461 (2001-03-01), Gaber
patent: 6269581 (2001-08-01), Groh
patent: 6519083 (2003-02-01), Heinrich

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular scope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular scope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular scope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3278372

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.