Modular room system and method

Static structures (e.g. – buildings) – Footing or foundation type – Socket

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C052S239000, C052S126400, C248S519000

Reexamination Certificate

active

06786017

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to room structures, and more particularly to modular rooms and modular room structures, methods for assembling such rooms and structures, modular room and structure components, and methods of assembling such components.
BACKGROUND OF THE INVENTION
Modular rooms and modular room structures are becoming increasingly attractive for use in a variety of consumer markets due to the modularity and design flexibility of such rooms and room structures. Modular rooms are typically employed when an additional room or structure is required within a larger structure. Among other purposes, such a room can be employed for pharmacies, eye care stores, banks, and other facilities within a store. Modular rooms are commonly free standing and are located at least partially within another larger structure, such as a grocery store, drug store, shopping center, or any other building or structure. However, the modular room can share a common wall with the larger structure. For example, the rear wall of the modular room structure may be one of the exterior or interior walls of the larger structure. A number of different modular room structures exist, and can be employed in a number of different fields and in a number of different applications. Such structures can be employed to connect and/or at least partially stabilize a modular room upon a floor, to connect portions of the modular room to a floor, to join wall panels to one another, and for a number of other purposes.
Modular rooms can be an alternative to conventional manners of constructing additional rooms within the larger structure (e.g., using cinderblock, walls of wood and sheetrock, etc.) or altering the larger structure to add an additional room. Both alternatives can be expensive, and can include costs associated with demolition, supplies, labor, etc. In addition, both alternatives create a permanent structure that can only be altered by incurring the costs of additional construction or demolition.
Modular rooms and modular room structures also provide significant advantages over conventional rooms and room structures relating to assembly, transport, disassembly, inventory, manufacturing. For example, modular rooms can often be assembled and disassembled as needed to simplify manufacturing, shipping, and assembly. However, current modular rooms still require a considerable amount of time (e.g., several weeks) to assemble and disassemble, and typically have a large number of components. As another example, many of the modular room structures employed to assemble modular rooms do not permit adjustment, make assembly difficult, and are weak or unstable.
Compounding these problems is the fact that many conventional modular room components, though similar in shape and function, are not interchangeable with one another. The ability to quickly assemble and disassemble modular room structures is desirable due to the often heavy costs of space and lost business, as well as other factors associated with “down time” of a company or operation that would otherwise be using the room structure (such as to conduct business). Similar components that have a variety of sizes, such as, wall panels, cross stretchers, and primary uprights can increase the cost of manufacturing a modular room or structure, can increase the complexity of assembling and disassembling the modular room or structure, and can result in a room or structure that requires a longer time to assemble and disassemble.
Some existing modular rooms and modular room structures lack sturdiness and can be damaged or ultimately collapse under heavy loads, external forces, and vibration. Modular rooms and modular room structures can particularly lack sturdiness as a result of being loaded by shelving, fixtures, equipment, and other elements and structure attached thereto or otherwise exerting force thereon. In addition, modular rooms and other structures must often withstand earthquakes and minimum loading thresholds as required by law.
Another design issue with regard to modular rooms and modular room structures is related to the floor or other surface upon which such a room or structure is assembled. Specifically, some current modular rooms are not well-suited for areas where the floor surface is uneven or sloping. If such modular rooms are located in areas with uneven or sloping floors, problems can arise with regard to assembly and structural instability.
Still other problems with many existing modular rooms and modular room structures are related to the aesthetic appearance of such rooms and structures. For example, many modular rooms and modular room structures have only a single exterior color scheme, therefore making it difficult to match the color scheme of a surrounding structure or environment. In addition, current modular rooms and modular room structures are often aesthetically unpleasing due to visible structural elements, fasteners and fastening features, and the like.
Due to the design of many components of conventional modular rooms and structures, users are often significantly limited in their ability to change the modular room or structure to other configurations. In many cases, a user is therefore only able to assemble the modular room or structure in one manner. Such inflexibility often presents problems during planning and installation of conventional modular rooms and structures.
With reference now to
FIGS. 35 and 36
, a problem inherent in the design of conventional modular rooms is the inability to employ standardized room components (such as wall panels, stretchers, doors and door frame, fixtures, and the like) in both interior and exterior locations of the modular room. As will now be described, this problem stems at least in part from the type of modular room components that are commonly employed in conventional modular room designs.
Conventional modular rooms employ uprights that define part of the “skeleton” of the modular room. Wall panels and other room components having standard sizes are attached to and are supported by the uprights to define the walls and perimeter of the modular room. For purposes of reduced inventory, easier and less expensive manufacturing and assembly, and room design flexibility, it is desirable to have a minimum number of different wall panel types and a minimum number of different room components for a modular room. For example, standardized wall panels available in a limited number of widths (e.g., 24″, 32″ and 48″) are preferred over wall panels that must be manufactured in more sizes or to custom dimensions. In addition, it is desirable to employ uprights that are relatively inexpensive and occupy as little space as possible. Accordingly, conventional uprights are commonly designed for connection to wall panels, stretchers, and other room components on fewer than all sides of the uprights. For example, many conventional uprights are provided with mounting apertures, fixtures or other mounting features on only two of four sides of each upright. Such a design enables the other sides of the upright to be used for mounting or hanging fixtures and other elements upon the upright, and can facilitate the use of more efficient upright cross-sectional shapes (such as elongated rectangular shapes).
Unfortunately, the use of uprights as just described is at odds with the use of standardized modular room wall panels and other modular room components. This is particularly evident in cases where a user desires to employ the same size modular room wall panels or other modular room components in the interior and exterior of the modular room. With continued reference to
FIG. 35
for example, the exterior and interior wall panels W of the modular room M have the same length only because the primary uprights P to which they are connected enable wall connections on more than two sides and because the primary uprights P occupy the same amount of space in both planar dimensions (e.g., the primary uprights P are square). As mentioned above, this is not a highly desirable design for modul

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular room system and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular room system and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular room system and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3233539

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.