Electricity: conductors and insulators – Conduits – cables or conductors – Extensible
Reexamination Certificate
1999-01-05
2001-05-22
Reichard, Dean A. (Department: 2831)
Electricity: conductors and insulators
Conduits, cables or conductors
Extensible
C174S1100SR, C174S13700R, C428S383000
Reexamination Certificate
active
06235990
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention pertains to telephone cords and, more particularly, to modular telephone cords.
Telephone cords are usually wound and coiled on mandrels to form spirals. Desirably, spiral telephone cords can be extended when using the telephones to which they are connected, and can be returned to their original retracted position when the telephones are not in use. Telephone cords have many uses.
Telephone cords used to connect a handset to a base should have sufficient retractility to insure that they will return in a controlled gradual manner to their normal retracted position after having been extended and released. Coiled or spiral telephone cords, however, which also known as “spring cords” or “retractile cords” should not be so strongly retractile that they require excessive forces to extend the telephone cord. If the telephone cord is too unyielding, the telephone handset or device to which the telephone cord is connected may be removed on or pulled from its support. While excessive retractility should be avoided, a telephone cord should not be made so stretchable that its distended spirals fail to return to their retracted position after using the telephone. This is especially important in order to prevent unsightly, excessive sag of telephone cords which are used on wall-mounted telephones. Furthermore, it is desirable that the retracted length of the telephone cord be as short as possible so as to be unobtrusive and avoid taking up excessive space and being distractive. In order to avoid this situation, telephone cords that are connected to telephone handsets must extend easily, perform dependably, and be as short as possible in their retracted position.
Retractable telephone cords are often constructed of cordage of individually insulated, mandrelated flexible conductor comprising tinsel ribbons. Conventional telephone cords are also often covered with nylon, insulated with polyvinyl chloride (PVC), and jacketed with a PVC composition in a circular configuration.
Telephone cords which utilize modular plugs for terminating the cord conductors are known as “modular telephone cords” . Jacks adapted to receive the modular plugs are mounted in the telephone housing or base and in a wall terminal thereby permitting easy replacement of either the line or retractile cord by a customer or an installer. Modular telephone cords have become very popular with consumers and telephone serviceman because of their ease of use and interchangeability.
The popularity of modular telephone cords with its associated plug-terminated cordage inspired the development of telephone cordage having a smaller cross-section than that used in the past. Conventional telephone cordage design suitable for use with modular plugs typically have smaller conductors arranged in a parallel relationship, positioned in a single plane, and encapsulated with a flattened oval-shaped jacket. To reduce the size of the insulated conductor, the knitted nylon covering the tinsel conductors was often eliminated and replaced with a crystalline thermoplastic elastomer.
It has been found that if top coated cordage is formed into a spring cord configuration, it has excellent retractile properties. However, when top-coated cordage is formed on mandrels of automatic cord making apparatus, the finished cords are so strongly retractile that excessive forces are required to stretch and expand the telephone cord. This problem occurs not only because of the top coating but also because of the relatively small diameter of the convolutions of the cordage. The diameter which is about 0.64 cm has been increased by forming the convolutions on larger diameter mandrels to achieve a top-coated cord having a larger diameter such as for example on the order of 0.95 cm. Although such prior art cords are suitably extensible, they lack good retractility. This is particularly noticeable in prior telephone cords which are used on wall-mounted telephones and which are desired to have an extended length of 7.6 meters and a retracted length of about 1 meter.
It is, therefore, desirable to provide improved modular retractile telephone cords which overcome most, if not all, of the preceding problems.
SUMMARY OF THE INVENTION
An improved telephone cord is provided which is compact, reliable, and economical. Advantageously, the space-saving telephone cord reduces sagging, is less obtrusive, and occupies a smaller area than conventional bulky saggy telephone cords. The attractive space-saving telephone cord is easy-to-use, convenient and effective. Desirably, the user-friendly telephone cord complies with telephone standards and requirements in the United States, Europe, Japan, and other countries. The novel telephone cord also achieved unexpected surprisingly good results.
The inventive telephone cord can be used as: a telephone handset cord for use with telephone handsets, a telephone headset cord for use with telephone headsets, a telephone vehicle cord for use with car phones or vehicles phones, a data transmission or receiving cord such as a telephone computer cord for use with a microprocessor, computer or central processing unit (CPU), or a telephone modem cord for use with a modem.
The telephone cord preferably comprises a modular retractile (retractable) telephone cord with at least one modular telephone plug at one end. The other end of the telephone cord can be connected to another modular telephone plug, or a different plug, or hardwire or otherwise connected to a telephone line or other circuitry. The modular telephone plug snap fits into a socket, jack, receptacle or other complementary-shaped female connector, in a telephone handset, base unit, wall receptacle, headset, etc.
The retractile telephone cord has a core comprising 2 to 8 conductors, preferably 4 to 7 conductors. For data transmission or receiving telephone cords, it is preferred that the conductors are twisted. For voice transmission or receiving telephone cords, it is preferred that the conductors are substantially parallel. The conductor can comprise wires, strands, or a flexible tinsel ribbon.
The conductors can be electrically insulated, isolated and separated from each other by primary insulation. The primary insulation can comprise an insulating material such as: a crystalline thermoplastic elastomer, polyethylene, polyvinyl chloride (PVC), nylon (polyamide), neoprene (polychloroprene)(polymerized chloroprene), polyurethane, polyurethane diisocyanate, urethane, butadiene, polystyrene, natural rubber (natural polyisoprene), styrene butadiene, acrobonitrile-butadiene, butyl rubber, vulcanized Hevea, Buna S, polysulfone, silicone, polysiloxane, chlorosulfanated polyethylene, or preferably polypropylene.
The retractile telephone cord can have a unitary or composite outer protective jacket positioned about the primary insulation and core. The outer protective jacket provides secondary insulation and can comprise an elastomeric insulating material, such as: polytetrafluroethylene (PTFE)(Teflon), polyvinyl chloride, nylon, neoprene, butadiene, polystyrene, styrene butadiene, acrolonitrile-butadiene, butyl rubber, vulcanized Hevea, Buna S, polysylfone, silicone, natural rubber, polyethylene, polypropylene, chlorosulfanated polyethylene, polysiloxane, or preferably polyurethane, polyurethane diisocyanate, or urethane, and most preferably, a blend of polyurethane and ethylene vinyl acetate (EVA). If desired, at least part of the jacket can be coated with another elastomeric insulating material.
The retractile telephone cord has a coiled portion between the ends of the cord. The coiled portion can be wound or coiled into spirals or helixes. The coiled portion has coils which have a maximum outside coil diameter when the telephone cord is in a relaxed retracted position. The coiled portion can be uniform and even in which all the coils have the same uniform maximum outside coil diameter. The coiled portion can also be tapered in which at least some of the coils have a different maximum outside coil diameter. Advantageously, the maximum outside coil diam
Chu Yong R.
Morris Jeffrey M.
Nino Adolfo
Reichard Dean A.
Telephone Products, Inc.
Tolpin Thomas W.
Welsh & Katz Ltd.
LandOfFree
Modular retractile telephone cords does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modular retractile telephone cords, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular retractile telephone cords will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2504077