Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2000-12-20
2002-10-22
Schuberg, Darren (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S727000, C361S790000, C248S065000, C360S097020
Reexamination Certificate
active
06469899
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structural method of arranging electronic packages within a standard electronics rack housing. More particularly, the present invention relates to a system of arranging electronic packages within an electronics rack so that rack space is used more efficiently and that rapid exchanges of the electronics packages is possible.
BACKGROUND OF THE INVENTION
The necessity for specialized computer equipment has increased dramatically over recent years. Corporations, both large and small, as well as individual consumers have come to depend on computers to enhance and assist them in a broad assortment of tasks. For the individual or small business, personal computers are typically relatively compact and streamlined, often comprising a monitor, a keyboard, a mouse, and a CPU “box” that sits on a desktop or on the floor. These personal computers, although considered compact when deployed in relatively small numbers, can be quite cumbersome and bulky when deployed in larger quantities. It is not uncommon for an organization to require several computers to act as servers controlling their local area networks. Even the networks of small companies run more efficiently when specific tasks are split up among individual servers. Typically, the small company will have a room with several servers, all in standard CPU cases consuming a significant amount of space.
For larger corporations that require numerous servers, the traditional CPU package is not practical to house servers. Larger companies, especially “e-businesses” that use the internet and the world wide web to conduct their commerce, require a higher number of servers than that required by smaller businesses. Such organizations, and in particular the internet service providers, or ISPs, must be able to pack far more server appliances within a limited amount of space than would be conceivable using traditional desktop chassises. For such operations, an industry standard EIA (Electronics Industries Alliance) rack is often used to contain servers in a stacked arrangement that uses the available space more efficiently.
Such electronics racks are a relatively simple structure that closely resemble an open-frame bookcase without shelves. Computer server/component racks are typically constructed with perforated, hinged front-doors, rigid sides and a removable rear panel. Often, the rear panel of an electronics rack is constructed as a hinged, perforated door that is allowed to be opened and swung out of the way when access from the rear is desired. Within the rack exterior, or “shell,” formed by the sides and back panel is a structural frame. The rack frame is capable of supporting the weight of the electronics contained within the rack and serves as the primary means of securing components therein. The rack frame, closely resembles an industrial shelving unit and typically includes four rigid corner posts, connected to each other with a plurality of cross members and structural supports. Each of the four comer posts include a plurality of mounting holes, though which electronic components can be secured.
Industry standard 19″ EIA electronics racks are designed typically to house a column of electronics packages that are 17 ¾″ in width and with varying depths. The height of an electronics package can vary but, to be compatable with the rack mounting structure, must be an integer multiple of an EIA unit called simply the “U.” An EIA U is 1.75 inches. Electronic equipment generally has a height in multiples of “U's” e.g., 1U (1.75″), 2U (3.50″), 3U (5.25″), etc. A piece of equipment whose height is not an integer multiple of a U will not efficiently use rack space. Standard equipment racks are available in a wide assortment of heights, but the most common is of 42U height.
Typically, electronic packages are mounted in the rack from the front and secured in place with fasteners, specifically thumbscrews. The thumbscrews allow frequent installation and removal of the electronic packages with minimal effort and without hand tools. Power and data connections are preferably made by opening the rear panel of the rack and accessing the rear surface of the mounted device. If a piece of equipment is heavy or does not include features that allow it to be secured properly to the rack, a rack shelf can be secured in place to the rack frame to support the non-standard device. Alternatively, electronic components may be secured within the rack using a pair of drawer slides. The drawer slides, usually ball-bearing supported rails, are secured in place within the rack frame. Corresponding rails are located on the side surfaces of the electronics component to be mounted, thus allowing the component to be pulled in and out of the rack frame easily to allow quick and frequent access.
Although it is preferred that the height of the electronics components be a multiple of the standard EIA unit U, the dimension of the EIA unit is understood to represent a maximum allowable height. Two adjacent 1U height electronic devices will require a finite amount of clearance. This amount of clearance aides in the installation of the rack mounted electronics and promotes interference free insertion and removal. For a device that is much less heat intensive, for example an internet server, an overall height of 1.65″ (with 0.05″ clearance above and below) can be used for a 1-U package. In either example, a few thousandths of an inch of clearance room must be vacated to enable ease of installation.
A piece of electronics equipment that is mounted in a chassis may vertically span more than one EIA unit of height. For example, a power supply module could be mounted into an EIA rack system and allotted a vertical space equivalent to 4Us (1.75″×4=7″). If the manufacturer desires a minimum vertical clearance allowance (top and bottom) of 0.100 inches for example, the power supply could then be constructed to be 6.800 inches [(7.000−(2×0.010)] in height without concern for interfering with the installation or operation of adjacent pieces of equipment.
Of course, it is always desirable to make electronic equipment smaller. Smaller electronic equipment means that more pieces of equipment can be housed in a rack. Unfortunately, as the desire for miniaturization of electronics devices progresses, the standard minimum vertical amount of rack space, 1-U, has remained substantially unchanged. Since the U represents a minimum height, a piece of equipment that has a height that is less than 1.75″ must still be mounted so as to take up a full U of height. To compensate for the required height, compact equipment often will not extend to the full depth (15″ vs. 30″, for example) of the rack. When components that do not extend the full depth are mounted in a standard rack, space can be wasted and an important benefit of the rack mounting of components is diminished. While it would be possible to design a new rack system with a new set of standards for equipment size, it is preferable to create a means to modify the storage capabilities of current EIA racks to allow more storage configurations to be achievable within the confines of a standard “legacy” rack. Many companies have already invested significant amounts of money on their current facilities and equipment and would prefer not to have to change their equipment. Furthermore, it is not entirely practical to arrange systems to occupy less than a full EIA unit of height as devices that are often accessed at the front of a rack-mounted package (e.g., disk drives) require more height than such an arrangement would allow.
In an attempt to conserve rack space, some have mounted two half-depth, 1-U systems in a rack, one from the front and another from the back of a 1-U space, in a “back-to-back” configuration with limited success. Although this method allows two devices to be secured within a single space, much of
Hastings Robert J.
Jasso Thomas P.
Leigh Kevin B.
Varghese Paily T.
Compaq Information Technologies Group L.P.
Conley & Rose & Tayon P.C.
Duong Hung Van
Schuberg Darren
LandOfFree
Modular rack-mount server arrangement does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Modular rack-mount server arrangement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular rack-mount server arrangement will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2970146