Modular pressure swing adsorption apparatus

Gas separation: apparatus – Solid sorbent apparatus – Plural solid sorbent beds

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C096S130000, C096S144000, C096S150000

Reexamination Certificate

active

06451095

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an apparatus for separating gas fractions from a gas mixture having multiple gas fractions. In particular, the present invention relates to a rotary valve gas separation system having a plurality of rotating adsorbent beds disposed therein for implementing a pressure swing adsorption process for separating out the gas fractions.
BACKGROUND OF THE INVENTION
Pressure swing adsorption (PSA) and vacuum pressure swing adsorption (VPSA) separate gas fractions from a gas mixture by coordinating pressure cycling and flow reversals over an adsorbent bed which preferentially adsorbs a more readily adsorbed component relative to a less readily adsorbed component of the mixture. The total pressure of the gas mixture in the adsorbent bed is elevated while the gas mixture is flowing through the adsorbent bed from a first end to a second end thereof, and is reduced while the gas mixture is flowing through the adsorbent from the second end back to the first end. As the PSA or VPSA cycle is repeated, the less readily adsorbed component is concentrated adjacent the second end of the adsorbent bed, while the more readily adsorbed component is concentrated adjacent the first end of the adsorbent bed. As a result, a “light” product (a gas fraction depleted in the more readily adsorbed component and enriched in the less readily adsorbed component) is delivered from the second end of the bed, and a “heavy” product (a gas fraction enriched in the more strongly adsorbed component) is exhausted from the first end of the bed.
The conventional system for implementing pressure swing adsorption or vacuum pressure swing adsorption uses two or more stationary adsorbent beds in parallel, with directional valving at each end of each adsorbent bed to connect the beds in alternating sequence to pressure sources and sinks. However, this system is often difficult and expensive to implement due to the complexity of the valving required.
Furthermore, the conventional PSA or VPSA system makes inefficient use of applied energy, because feed gas pressurization is provided by a compressor whose delivery pressure is the highest pressure of the cycle. In PSA, energy expended in compressing the feed gas used for pressurization is then dissipated in throttling over valves over the instantaneous pressure difference between the absorber and the high pressure supply. Similarly, in VPSA, where the lower pressure of the cycle is established by a vacuum pump exhausting gas at that pressure, energy is dissipated in throttling over valves during countercurrent blowdown of adsorbers whose pressure is being reduced. A further energy dissipation in both systems occurs in throttling of light reflux gas used for purge. equalization. cocurrent blowdown and product pressurization or backfill steps.
Numerous attempts have been made at overcoming the deficiencies associated with the conventional PSA or VPSA system. For example, Siggelin (U.S. Pat. No. 3,176,446). Mattia (U.S. Pat. No. 4,452,612). Davidson and Lywood (U.S. Pat. No. 4,758,253), Boudet et al (U.S. Pat. No. 5,133,784), Petit et al (U.S. Pat. No. 5,441,559) and Schartz (PCT publication WO 94/04249) disclose PSA devices using rotary distributor valves having rotors fitted with multiple angularly separated adsorbent beds. Ports communicating with the rotor-mounted adsorbent beds sweep past fixed ports for feed admission, product delivery and pressure equalization. However, these prior art rotary distributor valves are impracticable for large PSA/VPSA units, owing to the weight of the rotating assembly. Furthermore, since the valve faces are remote from the ends of the adsorbent beds, these rotary distributor valves have considerable dead volume for flow distribution and collection. As a result, the prior art rotary distributor valves have poor flow distribution, particularly at high cycle frequencies.
Hay (U.S. Pat. No. 5,246,676) and Engler (U.S. Pat. No. 5,393,326) provide examples of vacuum pressure swing adsorption systems which reduce throttling losses in an attempt to improve the efficiency of the gas separation process system. The systems taught by Hay and Engler use a plurality of vacuum pumps to pump down the pressure of each adsorbent bed sequentially in turn, with the pumps operating at successively lower pressures, so that each vacuum pump reduces the pressure in each bed a predetermined amount. However, with these systems, the vacuum pumps are subjected to large pressure variations, stressing the compression machinery and causing large fluctuations in overall power demand. Because centrifugal or axial compression machinery cannot operate under such unsteady conditions, rotary lobe machines are typically used in such systems. However, such machines have lower efficiency than modern centrifugal compressors/vacuum pumps working under steady conditions.
Accordingly, there remains a need for a PSA/VPSA system which is suitable for high volume and high frequency production, while reducing the losses associated with the prior art devices.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a rotary module for implementing a high frequency pressure swing adsorption process with high energy efficiency.
The rotary module, in accordance with the invention, comprises a stator and a rotor rotatably coupled to the stator. The stator includes a first stator valve surface, a second stator valve surface, a plurality of first function compartments opening into the first stator valve surface, and a plurality of second function compartments opening into the second stator valve surface. The rotor includes a first rotor valve surface in communication with the first stator valve surface, a second rotor valve surface in communication with the second stator valve surface, and a plurality of flow paths for receiving adsorbent material therein. Each said flow path includes a pair of opposite ends. and a plurality of apertures provided in the rotor valve surfaces and in communication with the flow path ends and the function ports for cyclically exposing each said flow path to a plurality of discrete pressure levels between the upper and lower pressures for maintaining uniform gas flow through the first and second function compartments.
During pressurization and blowdown steps, the several adsorbers passing through the step will converge to the nominal pressure level of each step by a throttling pressure equalization from the pressure level of the previous step experienced by the adsorbers. Flow is provided to the adsorbers in a pressurization step or withdrawn in a blowdown step by compression machinery at the nominal pressure level of that step. Hence flow and pressure pulsations seen by the compression machinery at each intermediate pressure level are minimal by averaging from the several adsorbers passing through the step, although each absorber undergoes large cyclic changes of pressure and flow.
During the pressurization steps for each adsorber, either (or both) of the apertures of an adsorber already at a pressure is (are) opened respectively to a first or second pressurization compartment at a stepwise higher pressure. Similarly, during the pressurization steps for each adsorber, either (or both) of the apertures of an adsorber already at a pressure is (are) opened respectively to a first or second pressurization compartment at a stepwise lower pressure. Equalization then takes place by flow through the open aperture(s) from the pressurization/blowdown compartment into the adsorber, which by the end of the pressurization/blowdown step has attained approximately the same pressure as the pressurization/blowdown compartment(s). Each pressurization/blowdown compartment is in communication with typically several adsorbers being pressurized (in differing angular and time phase) at any given time, so the pressure in that compartment and the pressurization flow to that compartment are substantially steady.
The flow path through the adsorbers may be radial or axial. If the adsorbers are configured for radial flow, th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular pressure swing adsorption apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular pressure swing adsorption apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular pressure swing adsorption apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2910743

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.