Modular optical switch fabric

Optical waveguides – With optical coupler – Switch

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S016000

Reexamination Certificate

active

06834138

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to optical switches, and particularly to modular optical switch fabrics.
2. Technical Background
Over the past several decades, fiber optic technology has transformed the telecommunications industry. A decade ago, network designs included relatively low-speed transceiver electronics at each end of a communications link. Light signals were switched by being converted into electrical signals. The electrical signals were switched using electronic switches, and converted back again into light signals. The bandwidth of electronic switching equipment is in the Gigahertz range. On the other hand, the bandwidth of single mode fiber is in the Terahertz range. As the demand for bandwidth increased, network designers have sought ways to exploit the bandwidth in the 1550 nm region. Thus began the development of optically transparent switching fabrics.
In one approach, optical designers have considered using planar optical circuit technology to create space division optical switches. In other approaches, designers have considered using movable MEMS mirrors in planar waveguide arrays to create optical switches. Unfortunately, it is very difficult to create large scale N×N optical switch fabrics using these approaches.
In yet another approach being considered, designers are investigating free-space plane-to-plane optical interconnects, referred to as three-dimensional optical cross-connects (3D OXCs). 3D OXCs have the potential to make large scale N×N (e.g., 4000 port×4000 port) switching a reality. However, there are several drawbacks to large scale N×N switching fabrics. Once demand exceeds the capacity of the N×N fabric, the entire fabric must be replaced by a larger fabric. Thus, large replacement costs and service interruptions are incurred. Network managers face the same problem if a portion of the fabric becomes damaged. The entire fabric must be replaced. Finally, designers are having difficulties producing large scale N×N fabrics. The alignment between collimator arrays and beam steering arrays must be fixed over the lifetime of the fabric, and under the operating conditions that the fabric is subject to.
What is needed is a modular optical N×N switching fabric that allows “pay-as-you-grow” upgrades. In other words, a switch fabric is needed that can be expanded by simply adding switching capacity as needed. What is also needed is a modular optical N×N switching fabric that includes modules that can be replaced and repaired without causing interruptions in service. Smaller fabrics are also advantageous in the sense that a module having a unit array size significantly smaller than the aggregate array size can be more easily produced.
SUMMARY OF THE INVENTION
The present invention addresses the needs described above. The present invention provides a modular optical N×N switching fabric that allows “pay-as-you-grow” upgrades. The present invention allows users to expand the switch fabric capacity by simply adding another switch fabric module. The present invention also features a modular optical N×N switching fabric having modules that can be replaced and repaired without causing interruptions in service. The optical modules are advantageous because they include smaller fabrics that are more easily produced than large scale fabrics.
One aspect of the present invention is a modular optical switch fabric that includes an optical chassis. At least one optical module is removably coupled to the optical chassis. The at least one optical module includes a collimator panel and a beam steering panel secured to a frame member. The frame member is configured to position the collimator panel in fixed optical alignment relative to the beam steering panel.
In another aspect, the present invention includes a modular optical switch fabric that includes an optical chassis. A reflective element is attached to the optical chassis. At least one optical module is mechanically coupled to the optical chassis and optically coupled to the mirror. The at least one optical module includes a collimator panel and a beam steering panel secured to a frame member. The frame member is configured to position the collimator panel in fixed optical alignment relative to the beam steering panel.
In another aspect, the present invention includes a modular optical switch fabric that includes an optical chassis. At least one pair of optical modules are coupled to the optical chassis. A first optical module of the pair of optical modules is optically coupled to a second optical module of the pair of optical modules. Each optical module includes a collimator panel and a beam steering panel secured to a frame member. The frame member is configured to position the collimator panel in fixed optical alignment relative to the beam steering panel.
In another aspect, the present invention includes a modular optical switch fabric that includes an optical chassis having a chassis connector. At least one optical module has an optical module connector mating with the chassis connector such that the at least one optical module is removably coupled to the optical chassis. The at least one optical module includes a collimator panel and a beam steering panel secured to a frame member. The frame member is configured to position the collimator panel in fixed optical alignment relative to the beam steering panel.
In another aspect, the present invention includes a modular optical switch fabric that includes an optical chassis having at least one first chassis connector and at least one second chassis connector. A reflective element is attached to the optical chassis. At least one pair of optical modules includes a first optical module and a second optical module, the first optical module has a first optical module connector mating with the at least one first chassis connector, and the second optical module has a second optical module connector mating with the at least one second chassis connector, such that the first optical module is optically coupled to the second optical module via the reflective element. Each optical module includes a collimator panel and a beam steering panel secured to a frame member. The frame member is configured to position the collimator panel in fixed optical alignment relative to the beam steering panel.
In another aspect, the present invention includes an optical module for use in an optical switch fabric. The optical module includes a frame member, a collimator panel secured to the frame member, and a beam steering panel secured to a frame member. The collimator panel is in fixed optical alignment relative to the beam steering panel.
In another aspect, the present invention includes a method for directing a light signal in an optical switch fabric. The optical switch fabric includes an optical chassis. The method includes the step of providing at least one optical module removably coupled to the optical chassis. The at least one optical module includes a collimator element and a beam steering element each secured to a frame member. The frame member is configured to position the collimator element in fixed optical alignment relative to the beam steering element. The light signal is input into the optical module via the collimator element, whereby the light signal is automatically directed onto the beam steering element by virtue of the fixed optical alignment provided by the frame.
In another aspect, the present invention includes a method for directing a light signal in an optical switch fabric. The optical switch fabric includes an optical chassis and a reflective element mounted on the optical chassis. The method includes providing at least one pair of optical modules removably coupled to the optical chassis. A first optical module of the pair of optical modules is optically coupled to a second optical module of the pair of optical modules via the reflective element. The first optical module includes a first collimator element and a first beam steering element

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular optical switch fabric does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular optical switch fabric, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular optical switch fabric will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3331284

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.