Modular observation crawler and sensing instrument and...

Railways – Tubular way – Internal service device

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C104S138100, C073S865800, C074S110000, C105S365000

Reexamination Certificate

active

06450104

ABSTRACT:

TECHNICAL FIELD
The present invention is generally directed to a robotic apparatus and, more particularly, to a remotely controlled robotic apparatus adapted to travel through enclosed spaces such as pipes or ducts using mechanically enabled inchworm-like motions.
BACKGROUND ART
The use of robotic devices and particularly robotic vehicles has become increasingly important in recent years as researchers seek to develop new and improved methods for carrying out remote or hazardous tasks with minimal human effort. A wide variety of tasks are envisioned for robotic devices.
For example, search-and-rescue, damage assessment and other information-gathering operations could be carried out by robotic vehicles at sites such as a buildings damaged by earthquakes or bombings. When rescuers and members of disaster teams approach a collapsed building or other structure, they face the difficulty of trying to rescue the survivors they have located without accidentally injuring those they have not yet found. In the rubble of a large building, it is difficult to know where survivors are trapped and rescuers sometimes risk their own lives climbing into the rubble to find the survivors. Because pipes and other enclosed conduits are often left intact when buildings collapse, a robotic vehicle could be used to navigate the pipes in order to move through the buildings. Similarly, robotic vehicles could be employed in hostage situations to travel through HVAC ductwork or plumbing systems in order to gather intelligence on the terrorists and their hostage victims. In other examples, robotic vehicles could be used to perform inspection and maintenance tasks, and to carry out non-destructive testing, in remote or hazardous locations such as nuclear power plant pipes and gas or water lines.
In performing any of the foregoing tasks, the design of the robotic vehicle should permit a number of different kinds of instruments and sensors to be installed thereon. For example, accelerometers could be used to detect vibrations made by a survivor's tapping on pipes. Speakers could be used to output music or messages to provide comfort and information to victims. Microphones could be used to pick-up various informative sounds within a building or the conduit of the building through which the robotic vehicle travels. Video cameras could be used to enable the operators of the robotic apparatus to detect cracks or scaling in a pipe, or to view the area outside the end of a conduit such as by viewing a room from the vantage point of a vent. Video cameras could also be used to assist maintenance personnel in mapping out the layout of an unknown system of pipes or ducts. Other sensors include infrared sensors to detect heat, chemical monitors such as electronic noses to detect gas leaks or oxygen or pH concentration, tactile sensors, radioactivity sensors, and the like. Instruments include sampling devices, gripping devices, manipulative arms, and other task-specific tools. In one example, a robotic vehicle equipped with a gripping device could be used to pull the ends of wires and cables through a length of electrical conduit.
Various robotic vehicular devices have heretofore been developed. U.S. Pat. Nos. 5,293,823 and 5,497,707 to Box disclose a robotic apparatus wherein inflatable bladders are used to engage the inside surface of a pipe and three tubular bellows are used to move and turn the robotic apparatus through the pipe. U.S. Pat. Nos. 5,601,025 and 5,791,255 to Box disclose a robotic apparatus wherein radially extendable shoes and pivotable arcuate arms are actuated by pistons to engage the inside surface of a pipe. U.S. Pat. No. 5,121,694 to Zollinger discloses a robotic apparatus wherein air cylinders are used to expand and contract its length and to extend and retract leg members to engage the inside surface of a pipe. U.S. Pat. No.5,018,451 to Hapstack also discloses a robotic apparatus wherein air cylinders are used to expand and contract its length and to extend and retract legs for engaging the inside surface of a pipe. U.S. Pat. Nos. 5,080,020; 4,938,081 and 4,848,168 to Negishi disclose a robotic apparatus wherein inflatable elastic elements are used to expand and contract the robotic apparatus and engage the inside surface of a pipe. U.S. Pat. No. 4,770,105 to Takagi et al. discloses a robotic apparatus wherein motor-driven continuous treads are used to engage the inside surface of a pipe and move the robotic apparatus therethrough. U.S. Pat. No. 4,862,808 to Hedgcoxe et al. discloses a robotic apparatus using a combination of motor-driven and idler wheels to engage the inside surface of a pipe and transport the robotic apparatus therethrough.
In
Micro Inspection Robot for
1-
in. Pipes,
IEEE/ASME TRANSACTIONS ON MECHATRONICS, Vol. 4, No. 3, September 1999, Suzumori et al. disclose a robotic apparatus using electromagnetic motor-driven planetary gear and wheel assemblies to engage the inside surface of a pipe and transport the robotic apparatus therethrough. Robotic devices employing inchworm-like or snake-like motion in endoscopic or other miniaturized applications are disclosed in U.S. Pat. No. 5,386,741 to Rennex; U.S. Pat. No. 5,906,491 to Dario et al.: and in an IEEE publication entitled
Characteristics of Piezoelectric Locomotive Mechanism foran In-Pipe Micro Inspection Machine,
SIXTH INTERNATIONAL SYMPOSIUM ON MICRO MACHINE AND HUMAN SCIENCE, 1995, by Idogaki. Other robotic-like devices adapted to move through pipes are disclosed in U.S. Pat. Nos. 5,574,347 to Newbauer and U.S. Pat. No. 6,026,911 to Angle et al.
Factors such as complexity, efficiency and practicality are some of the impediments to developing robotic solutions that can lead to general acceptance within a given industry. The present invention is a development in the field of biorobotics, which generally is a study of advanced robotics based on biological or physiological models. The biorobotic approach considers that biological and physiological models offer appropriate directions for inquiry by mankind, since such models have been selected, developed and tested by natural mechanisms over great spans of time. The challenge rests in emulating such models in the form of man-made implementations, while at the same time preventing such implementations from becoming so mechanically complex or energy-dependent that insufficient practicality and utility results therefrom.
Accordingly, the present invention finds a solution in the mechanical emulation of the crawling motion of an inchworm or caterpillar. While some of the robotic devices disclosed in the above-cited references emulate inchworm-like motion, it is acknowledged by those skilled in the art that there is much room for further improvement. The present invention is considered as providing an efficient, simplified and practicable solution to the problems associated with robotic vehicles designed to traverse enclosed spaces.
DISCLOSURE OF THE INVENTION
The present invention provides a robot adapted to crawl through pipes by performing inchworm or caterpillar-like movements. Moreover, the robot is adapted to crawl in both forward and reverse directions as well as along horizontal, sloped and vertical planes. Still further, the robot is adapted to maneuver right-angle turns, not only by turning left or right in the horizontal plane but also by turning up or down between horizontal and vertical planes.
Accordingly, the present invention provides a robotic apparatus adapted for locomotion in an enclosed space comprising a front segment, a medial segment, and a rear segment. The front segment includes a front work-energy transfer device mounted thereto in operative communication with a power supply source. A plurality of front radial displacement members extend radially outwardly with respect to the front segment. A plurality of front gripping members are also included. Each front gripping member is attached to a corresponding one of the plurality of front radial displacement members. A front mechanical linkage interconnects the front work-energy transfer device and each

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular observation crawler and sensing instrument and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular observation crawler and sensing instrument and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular observation crawler and sensing instrument and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2828660

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.